COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

< ≣ ▶

Machine Learning: Generalization

문 🕨 🗉 문

Machine Learning Generalization bounds

Theorem

For any hypothesis class \mathcal{H} and distribution D, if a training sample S is drawn from D of size $n \geq \frac{2}{\varepsilon} [\log_2(2\mathcal{H}[2n]) + \log_2(1/\delta)]$. then with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with error $err_D(h) \geq \varepsilon$ has $err_S(h) > 0$. Equivalently, every $h \in \mathcal{H}$ with $err_S(h) = 0$ has $err_D(h) < \varepsilon$.

Theorem

For any hypothesis class \mathcal{H} and distribution D, if a training sample S is drawn from D of size $n \geq \frac{8}{\varepsilon^2} [\log_2 (2\mathcal{H}[2n]) + \log_2 (2/\delta)]$. then with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ will have $|err_D(h) - err_S(h)| \leq \varepsilon$.

Theorem (Sauer's Lemma)

If
$$VCdim(\mathcal{H}) = d$$
, then $\mathcal{H}[n] \leq \sum_{i=0}^{d} {n \choose i} \leq \left(\frac{en}{d}\right)^{d}$.

Theorem

For any hypothesis class ${\mathcal H}$ and distribution D, a training sample S of size

$$\Omega\left(rac{1}{arepsilon}\left[\textit{VCdim}(\mathcal{H})\log\left(1/arepsilon
ight)+\log{1/\delta}
ight]
ight)$$

is sufficient to ensure that with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with $\operatorname{err}_D(h) \geq \varepsilon$ has $\operatorname{err}_S(h) > 0$.

A =
 A =
 A =
 A
 A

Machine Learning Generalization bounds

Theorem

For any hypothesis class $\mathcal H$ and distribution D, if a training sample S is drawn from D of size

$$n \geq rac{2}{arepsilon} \left[\log_2\left(2\mathcal{H}[2n]
ight) + \log_2\left(1/\delta
ight)
ight].$$

then with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with error $err_D(h) \ge \varepsilon$ has $err_S(h) > 0$. Equivalently, every $h \in \mathcal{H}$ with $err_S(h) = 0$ has $err_D(h) < \varepsilon$.

• We will need the following lemma.

Lemma

Let \mathcal{H} be a concept class over some domain \mathcal{X} and let S and S' be sets of n elements drawn from some distribution D on \mathcal{X} , where $n \ge 8/\varepsilon$. Let A be the event that there exists $h \in \mathcal{H}$ with $\operatorname{err}_{S}(h) = 0$ but $\operatorname{err}_{D}(h) \ge \varepsilon$. Let B be the event that there exists $h \in \mathcal{H}$ with $\operatorname{err}_{S}(h) = 0$ but $\operatorname{err}_{S'}(h) \ge \varepsilon/2$. Then $\Pr[B] \ge \Pr[A]/2$.

End

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

・ロト ・回ト ・ヨト ・ヨト

Ξ