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Machine Learning

Generalization bounds

Theorem

Let H be a hypothesis class and let £,6 > 0. If a training set S of size
n> X(in H] +In1/s),
€

is drawn from distribution D, then with probability at least (1 — ¢)
every h € H with true error errp(h) > ¢ has training error errs(h) > 0.
Equivalently, with probability at least (1 — §), every h € H with
training error 0 has true error at most €.
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Machine Learning

Generalization bounds

Theorem
Let H be a hypothesis class and let £,6 > 0. If a training set S of size

= %(m 4] +In 1/5),

is drawn from distribution D, then with probability at least (1 — ¢)
every h € H with true error errp(h) > ¢ has training error errs(h) > 0.
Equivalently, with probability at least (1 — §), every h € H with
training error O has true error at most €.

@ The above result is called the PAC-learning guarantee since it
states that if we can find an h € H consistent with the sample,
then this h is Probably Approximately Correct.

@ What if we manage to find a hypothesis with small disagreement
on the sample? Can we say that the hypothesis will have small
true error?
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Machine Learning
Generalization bounds

Let H be a hypothesis class and let €,0 > 0. If a training set S of size
1
n> g(ln |H| + In(1/6)),

is drawn from distribution D, then with probability at least (1 — ¢)
every h € H with true error errp(h) > e has training error errs(h) > 0.
Equivalently, with probability at least (1 — ), every h € H with
training error O has true error at most ¢.

Theorem (Uniform convergence)

Let H be a hypothesis class and let €,0 > 0. If a training set S of size

n> —(In |H| +1n(2/6)),

is drawn from distribution D, then with probability at least (1 — §)
every h € H satisfies |errp(h) — errs(h)| < e.
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Machine Learning

Generalization bounds

Let H be a hypothesis class and let €, > 0. If a training set S of size

n> é(m M| +1n (1/5)),

is drawn from distribution D, then with probability at least (1 — 0)
every h € H with true error errp(h) > ¢ has training error errs(h) > 0.
Equivalently, with probability at least (1 — 6), every h € H with
training error O has true error at most .

Theorem (Uniform convergence)
Let H be a hypothesis class and let €, > 0. If a training set S of size

n> 2—22(In |H| + In(2/6)),

is drawn from distribution D, then with probability at least (1 — 4)
every h € H satisfies |errp(h) — errs(h)| <e.

v

@ The above theorem essentially means that conditioned on S being
sufficiently large, good performance on S will translate to good
performance on D.
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Machine Learning

Generalization bounds

Theorem (Uniform convergence)

Let H be a hypothesis class and let £, > 0. If a training set S of size

n> —(In |H| + In(2/6)),

is drawn from distribution D, then with probability at least (1 — ¢)
every h € H satisfies |errp(h) — errs(h)| < e.

@ The above theorem follows from the following tail inequality.

Theorem (Chernoff-Hoeffding bound)

Let xq, ..., x, be independent {0,1} random variables such that
Vi,Prix; =1] = p. Let s =3 1 x;. Forany0 <a <1,

Pr[s/n>p+a] < e 2% and Pr[s/n<p—a] < i
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Machine Learning
Generalization bounds

@ Let us do a case study of Learning Disjunctions.

o Consider a binary classification context where the instance space
X ={0,1}¢.

@ Suppose we believe that the target concept is a disjunction over a
subset of features. For example, ¢* = {x: x1 V x10 V x50}

@ What is the size of the concept class H?
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Machine Learning
Generalization bounds

@ Let us do a case study of Learning Disjunctions.

o Consider a binary classification context where the instance space
X ={0,1}¢.

@ Suppose we believe that the target concept is a disjunction over a

subset of features. For example, ¢* = {x: x1 V x10 V x50}

What is the size of the concept class H? |H| = 29

So, if the sample size |S| = %(dln 2+1n(1/0)) then good

performance on the training set generalizes to the instance space.

Question: Suppose the target concept is indeed a disjunction,

then given any training set S is there an algorithm that can at

least output a disjunction consistent with S.

e o

[
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Machine Learning
Generalization bounds

@ Occam’s razor: William of Occam around 1320AD stated that
one should prefer simpler explanations over more complicated
ones.
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Machine Learning
Generalization bounds
@ Occam'’s razor: William of Occam around 1320AD stated that
one should prefer simpler explanations over more complicated
ones.
@ What do we mean by a rule being simple?
o Different people may have different description languages for

describing rules.
@ How many rules can be described using fewer than b bits?
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Machine Learning
Generalization bounds

@ Occam'’s razor: William of Occam around 1320AD stated that
one should prefer simpler explanations over more complicated
ones.

@ What do we mean by a rule being simple?

o Different people may have different description languages for
describing rules.

o How many rules can be described using fewer than b bits? < 2°

Theorem (Occam's razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1 — &) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errp(h) < e for |S| = (bIn2+In (1/5)).
Equivalently, with probability at least (1 — §) all rules that can be
described in fewer than b bits will have errp(h) < %‘F(w.

y
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Machine Learning

Generalization bounds

Theorem (Occam's razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1 — &) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errp(h) < e for |S| = L(bIn2+1In (1/5)).
Equivalently, with probability at least (1 — §) all rules that can be
described in fewer than b bits will have errp(h) < W.

@ The theorem is valid irrespective of the description language.

@ It does not say that complicated rules are bad.

o It suggests that Occam’s rule is a good policy since simple rules
are unlikely to fool us since there are not too many of them.
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Machine Learning

Generalization bounds

Theorem (Occam's razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1 — &) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errp(h) < e for |S| = 1(bIn2 +In(1/5)).
Equivalently, with probability at least (1 — 6) all rules that can be
described in fewer than b bits will have errp(h) < w.

o Case study: Decision trees
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Generalization bounds

Theorem (Occam's razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1 — &) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errp(h) < e for |S| = 1(bIn2+In (1/6)).
Equivalently, with probability at least (1 — ) all rules that can be
described in fewer than b bits will have errp(h) < w.

o Case study: Decision trees
@ What is the bit-complexity of describing a decision tree (in d
variables) of size k?
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Machine Learning

Generalization bounds

Theorem (Occam'’s razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1 — §) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errp(h) < ¢ for |S| = (bIn2 + In (1/5)).
Equivalently, with probability at least (1 — ) all rules that can be

described in fewer than b bits will have errp(h) < W.

o Case study: Decision trees

o What is the bit-complexity of describing a decision tree (in d
variables) of size k? O(klogd)

@ So, the true error is low if we can produce a consistent tree with

fewer than |Z‘;ll nodes.
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Machine Learning
Generalization bounds

@ We have seen that for good generalization, the size of the
training set should depend on log, () that in some sense
captures the complexity of the hypothesis class.

o Let us try to understand this using a simple example. Consider
the age-versus-salary data.

o There are 100 possible ages and 1000 different salaries. This
makes the instance space X of size 10°.

o The hypothesis class consists of axis-parallel rectangles. What is
the size of H?
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Machine Learning
Generalization bounds

@ We have seen that for good generalization, the size of the
training set should depend on log, (H) that in some sense
captures the complexity of the hypothesis class.

@ Let us try to understand this using a simple example. Consider
the age-versus-salary data.

o There are 100 possible ages and 1000 different salaries. This
makes the instance space X of size 10°.

o The hypothesis class consists of axis-parallel rectangles. What is
the size of H? |H| = 10'°

o Suppose there are only N = 100 employed people for which we
know the data. Then for the purpose of generalization, we may
use [H| < N*.

@ Question: Is there is a tighter measure of complexity of a
hypothesis class with respect to generalization?

o Independent of the size of the support of the distribution D.
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Machine Learning
Generalization bounds

@ Question: Is there is a tighter measure of complexity of a
hypothesis class with respect to generalization?

o Independent of the size of the support of the distribution D.

Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels
all examples in A as positive and all examples in S\ A as negative.

Definition (VC Dimension)
The VC-dimension of # is the size of the largest set shattered by .
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Generalization bounds

Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels
all examples in A as positive and all examples in S\ A as negative.

Definition (VC Dimension)
The VC-dimension of H is the size of the largest set shattered by .

o Example: Consider the hypothesis class H of axis-parallel

rectangles.
@ Question: What is the VC-dimension of H?

o Question: Does there exist a set of 4 points that H can shatter?
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Generalization bounds

Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels
all examples in A as positive and all examples in S\ A as negative.

Definition (VC Dimension)
The VC-dimension of H is the size of the largest set shattered by .

o Example: Consider the hypothesis class H of axis-parallel

rectangles.
@ Question: What is the VC-dimension of H?

o Question: Does there exist a set of 4 points that H can shatter?
Yes
o Question: Does there exist a set of 5 points that H can shatter?
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Generalization bounds

Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels
all examples in A as positive and all examples in S\ A as negative.

Definition (VC Dimension)
The VC-dimension of H is the size of the largest set shattered by .

o Example: Consider the hypothesis class H of axis-parallel
rectangles.
o Question: What is the VC-dimension of H? VC-dim(H) =4
o Question: Does there exist a set of 4 points that H can shatter?
Yes
o Question: Does there exist a set of 5 points that H can shatter?
No
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Machine Learning
Generalization bounds

Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels
all examples in A as positive and all examples in S\ A as negative.

Definition (VC Dimension)
The VC-dimension of H is the size of the largest set shattered by .

Definition (Growth function)

Given a set S of examples and a concept class H, let
H[S]={hNS:heH} Thatis, H[S] is the concept class H
restricted to the set of points S. For integer n and class H, let
H[n] = max;s|—,, |H[S]|; this is called the growth function of H.
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Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels
all examples in A as positive and all examples in S\ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by .

Definition (Growth function)

Given a set S of examples and a concept class #, let
H[S]={hNS:heH} Thatis, H[S] is the concept class H
restricted to the set of points S. For integer n and class H, let
H[n] = max|s|—n [H[S]]; this is called the growth function of H.

@ The growth function of a class is also called shatter function or
shatter coefficient.
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Machine Learning

Generalization bounds

Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)
The VC-dimension of H is the size of the largest set shattered by 7.

Definition (Growth function)

Given a set S of examples and a concept class H, let
H[S]={hNS:heH} Thatis, H[S] is the concept class H
restricted to the set of points S. For integer n and class H, let
H[n] = max;s|—, |H[S][; this is called the growth function of H.

@ Fill in the blanks:

S is shattered by H iff |H[S]| = ?
The VC-dimension of H is the largest n such that H[n] = ?
For the case of axis-parallel rectangles, H[n] = ?

For linear separators in 2 dimensions, VCdim(H ) =__
For linear separators in 2 dimensions, H[n] =
For any H, VCdim(H) < ?

© © 06 © © ©
\)
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Machine Learning

Generalization bounds

Definition (Shattering)

Given a set S of examples and a concept class #, we say that S is
shattered by H if for every A C S there exists some h € #H that labels
all examples in A as positive and all examples in S\ A as negative.

Definition (VC Dimension)
The VC-dimension of H is the size of the largest set shattered by .

Definition (Growth function)

Given a set S of examples and a concept class H, let
H[S]={hNS:heH} Thatis, H[S] is the concept class H
restricted to the set of points S. For integer n and class H, let
H[n] = max;s|—n |H[S]|; this is called the growth function of #.

@ The growth function of a class is also called shatter function or
shatter coefficient.

o Fill in the blanks:

S is shattered by H iff |1[S]| = 2/5I.

The VC-dimension of 7 is the largest n such that #[n] =2".

For the case of axis-parallel rectangles, #[n] =0(n*).

For linear separators in 2 dimensions, VCdim(H) =3.

For linear separators in 2 dimensions, H[n] =0(n?).

For any H, VCdim(H) <log,(|H]).

© © 0 0 0 @
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Generalization bounds

Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels
all examples in A as positive and all examples in S\ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.

Definition (Growth function)

Given a set S of examples and a concept class H, let
H[S]={hNS:heH} Thatis, H[S] is the concept class H
restricted to the set of points S. For integer n and class H, let
H[n] = max|s|—, [H[S]|; this is called the growth function of H.

@ We can now discuss generalization bounds just in terms of growth
function and VC dimension (instead of in terms of |H]).
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Machine Learning
Generalization bounds

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size

n> 2 llogy (2H[20]) +logy (1/9)]

then with probability at least (1 — §), every h € H with error
errp(h) > € has errs(h) > 0. Equivalently, every h € H with
errs(h) = 0 has errp(h) < e.

J
Theorem

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size

n> 2 llog, (2H[2n]) + logs (2/9)]

then with probability at least (1 — 0), every h € H will have
lerrp(h) — errs(h)| < e.

Ragesh Jaiswal, ITD COL866: Foundations of Data Science




Machine Learning

Generalization bounds

Theorem

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size n > 2 [log, (24[2n]) + log, (1/8)] . then with
probability at least (1 — 6), every h € H with error errp(h) > & has
errs(h) > 0. Equivalently, every h € H with errs(h) = 0 has

errp(h) < e.

Theorem

| A,

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size n > & [log, (2H[2n]) + log, (2/6)] . then with
probability at least (1 — 6), every h € H will have

lerrp(h) — errs(h)| < e.

Theorem (Sauer's Lemma)

If VCdim(H) = d, then H[n] < 0 (1) < (<)

For any hypothesis class H and distribution D, a training sample S of
size

(0] (é [VCdim(H) log (1/€) + log 1/5])

is sufficient to ensure that with probability at least (1 — §), every
h € H with errp(h) > € has errs(h) > 0.
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