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Machine Learning
Generalization bounds

Theorem

Let H be a hypothesis class and let ε, δ > 0. If a training set S of size

n ≥ 1

ε
(ln |H|+ ln 1/δ),

is drawn from distribution D, then with probability at least (1− δ)
every h ∈ H with true error errD(h) ≥ ε has training error errS(h) > 0.
Equivalently, with probability at least (1− δ), every h ∈ H with
training error 0 has true error at most ε.
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Theorem

Let H be a hypothesis class and let ε, δ > 0. If a training set S of size

n ≥ 1

ε
(ln |H|+ ln 1/δ),

is drawn from distribution D, then with probability at least (1− δ)
every h ∈ H with true error errD(h) ≥ ε has training error errS(h) > 0.
Equivalently, with probability at least (1− δ), every h ∈ H with
training error 0 has true error at most ε.

The above result is called the PAC-learning guarantee since it
states that if we can find an h ∈ H consistent with the sample,
then this h is Probably Approximately Correct.
What if we manage to find a hypothesis with small disagreement
on the sample? Can we say that the hypothesis will have small
true error?
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Generalization bounds

Theorem

Let H be a hypothesis class and let ε, δ > 0. If a training set S of size

n ≥ 1

ε
(ln |H|+ ln (1/δ)),

is drawn from distribution D, then with probability at least (1− δ)
every h ∈ H with true error errD(h) ≥ ε has training error errS(h) > 0.
Equivalently, with probability at least (1− δ), every h ∈ H with
training error 0 has true error at most ε.

Theorem (Uniform convergence)

Let H be a hypothesis class and let ε, δ > 0. If a training set S of size

n ≥ 1

2ε2
(ln |H|+ ln (2/δ)),

is drawn from distribution D, then with probability at least (1− δ)
every h ∈ H satisfies |errD(h)− errS(h)| ≤ ε.
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Theorem

Let H be a hypothesis class and let ε, δ > 0. If a training set S of size

n ≥ 1

ε
(ln |H|+ ln (1/δ)),

is drawn from distribution D, then with probability at least (1− δ)
every h ∈ H with true error errD(h) ≥ ε has training error errS(h) > 0.
Equivalently, with probability at least (1− δ), every h ∈ H with
training error 0 has true error at most ε.

Theorem (Uniform convergence)

Let H be a hypothesis class and let ε, δ > 0. If a training set S of size

n ≥ 1

2ε2
(ln |H|+ ln (2/δ)),

is drawn from distribution D, then with probability at least (1− δ)
every h ∈ H satisfies |errD(h)− errS(h)| ≤ ε.

The above theorem essentially means that conditioned on S being
sufficiently large, good performance on S will translate to good
performance on D.
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Generalization bounds

Theorem (Uniform convergence)

Let H be a hypothesis class and let ε, δ > 0. If a training set S of size

n ≥ 1

2ε2
(ln |H|+ ln (2/δ)),

is drawn from distribution D, then with probability at least (1− δ)
every h ∈ H satisfies |errD(h)− errS(h)| ≤ ε.

The above theorem follows from the following tail inequality.

Theorem (Chernoff-Hoeffding bound)

Let x1, ..., xn be independent {0, 1} random variables such that
∀i ,Pr[xi = 1] = p. Let s =

∑n
i=1 xi . For any 0 ≤ α ≤ 1,

Pr[s/n > p + α] ≤ e−2nα
2

and Pr[s/n < p − α] ≤ e−2nα
2
.
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Machine Learning
Generalization bounds

Let us do a case study of Learning Disjunctions.
Consider a binary classification context where the instance space
X = {0, 1}d .
Suppose we believe that the target concept is a disjunction over a
subset of features. For example, c? = {x : x1 ∨ x10 ∨ x50}.
What is the size of the concept class H?
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Let us do a case study of Learning Disjunctions.
Consider a binary classification context where the instance space
X = {0, 1}d .
Suppose we believe that the target concept is a disjunction over a
subset of features. For example, c? = {x : x1 ∨ x10 ∨ x50}.
What is the size of the concept class H? |H| = 2d

So, if the sample size |S | = 1
ε (d ln 2 + ln (1/δ)) then good

performance on the training set generalizes to the instance space.
Question: Suppose the target concept is indeed a disjunction,
then given any training set S is there an algorithm that can at
least output a disjunction consistent with S .
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Machine Learning
Generalization bounds

Occam’s razor: William of Occam around 1320AD stated that
one should prefer simpler explanations over more complicated
ones.
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Machine Learning
Generalization bounds

Occam’s razor: William of Occam around 1320AD stated that
one should prefer simpler explanations over more complicated
ones.
What do we mean by a rule being simple?
Different people may have different description languages for
describing rules.
How many rules can be described using fewer than b bits?
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Occam’s razor: William of Occam around 1320AD stated that
one should prefer simpler explanations over more complicated
ones.
What do we mean by a rule being simple?
Different people may have different description languages for
describing rules.
How many rules can be described using fewer than b bits? < 2b

Theorem (Occam’s razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1− δ) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errD(h) ≤ ε for |S | = 1

ε (b ln 2 + ln (1/δ)).
Equivalently, with probability at least (1− δ) all rules that can be

described in fewer than b bits will have errD(h) ≤ b ln (2)+ln (1/δ)
|S | .
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Theorem (Occam’s razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1− δ) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errD(h) ≤ ε for |S | = 1

ε (b ln 2 + ln (1/δ)).
Equivalently, with probability at least (1− δ) all rules that can be

described in fewer than b bits will have errD(h) ≤ b ln (2)+ln (1/δ)
|S | .

The theorem is valid irrespective of the description language.
It does not say that complicated rules are bad.
It suggests that Occam’s rule is a good policy since simple rules
are unlikely to fool us since there are not too many of them.
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Theorem (Occam’s razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1− δ) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errD(h) ≤ ε for |S | = 1

ε (b ln 2 + ln (1/δ)).
Equivalently, with probability at least (1− δ) all rules that can be

described in fewer than b bits will have errD(h) ≤ b ln (2)+ln (1/δ)
|S | .

Case study: Decision trees
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Theorem (Occam’s razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1− δ) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errD(h) ≤ ε for |S | = 1

ε (b ln 2 + ln (1/δ)).
Equivalently, with probability at least (1− δ) all rules that can be

described in fewer than b bits will have errD(h) ≤ b ln (2)+ln (1/δ)
|S | .

Case study: Decision trees
What is the bit-complexity of describing a decision tree (in d
variables) of size k?
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Theorem (Occam’s razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1− δ) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errD(h) ≤ ε for |S | = 1

ε (b ln 2 + ln (1/δ)).
Equivalently, with probability at least (1− δ) all rules that can be

described in fewer than b bits will have errD(h) ≤ b ln (2)+ln (1/δ)
|S | .

Case study: Decision trees
What is the bit-complexity of describing a decision tree (in d
variables) of size k? O(k log d)
So, the true error is low if we can produce a consistent tree with
fewer than ε|S |

log d nodes.
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Machine Learning
Generalization bounds

We have seen that for good generalization, the size of the
training set should depend on log2 (H) that in some sense
captures the complexity of the hypothesis class.
Let us try to understand this using a simple example. Consider
the age-versus-salary data.

There are 100 possible ages and 1000 different salaries. This
makes the instance space X of size 105.
The hypothesis class consists of axis-parallel rectangles. What is
the size of H?
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Generalization bounds

We have seen that for good generalization, the size of the
training set should depend on log2 (H) that in some sense
captures the complexity of the hypothesis class.
Let us try to understand this using a simple example. Consider
the age-versus-salary data.

There are 100 possible ages and 1000 different salaries. This
makes the instance space X of size 105.
The hypothesis class consists of axis-parallel rectangles. What is
the size of H? |H| = 1010

Suppose there are only N = 100 employed people for which we
know the data. Then for the purpose of generalization, we may
use |H| ≤ N4.

Question: Is there is a tighter measure of complexity of a
hypothesis class with respect to generalization?

Independent of the size of the support of the distribution D.
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Question: Is there is a tighter measure of complexity of a
hypothesis class with respect to generalization?

Independent of the size of the support of the distribution D.

Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.
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Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.

Example: Consider the hypothesis class H of axis-parallel
rectangles.
Question: What is the VC-dimension of H?

Question: Does there exist a set of 4 points that H can shatter?
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Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.

Example: Consider the hypothesis class H of axis-parallel
rectangles.
Question: What is the VC-dimension of H?

Question: Does there exist a set of 4 points that H can shatter?
Yes
Question: Does there exist a set of 5 points that H can shatter?
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Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.

Example: Consider the hypothesis class H of axis-parallel
rectangles.
Question: What is the VC-dimension of H? VC -dim(H) = 4

Question: Does there exist a set of 4 points that H can shatter?
Yes
Question: Does there exist a set of 5 points that H can shatter?
No
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Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.

Definition (Growth function)

Given a set S of examples and a concept class H, let
H[S ] = {h ∩ S : h ∈ H}. That is, H[S ] is the concept class H
restricted to the set of points S . For integer n and class H, let
H[n] = max|S |=n |H[S ]|; this is called the growth function of H.
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Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.

Definition (Growth function)

Given a set S of examples and a concept class H, let
H[S ] = {h ∩ S : h ∈ H}. That is, H[S ] is the concept class H
restricted to the set of points S . For integer n and class H, let
H[n] = max|S |=n |H[S ]|; this is called the growth function of H.

The growth function of a class is also called shatter function or
shatter coefficient.
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Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.

Definition (Growth function)

Given a set S of examples and a concept class H, let
H[S ] = {h ∩ S : h ∈ H}. That is, H[S ] is the concept class H
restricted to the set of points S . For integer n and class H, let
H[n] = max|S |=n |H[S ]|; this is called the growth function of H.

Fill in the blanks:

S is shattered by H iff |H[S ]| = ?
The VC-dimension of H is the largest n such that H[n] = ?
For the case of axis-parallel rectangles, H[n] = ?
For linear separators in 2 dimensions, VCdim(H) = ?
For linear separators in 2 dimensions, H[n] = ?
For any H, VCdim(H) ≤ ?
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Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.

Definition (Growth function)

Given a set S of examples and a concept class H, let
H[S ] = {h ∩ S : h ∈ H}. That is, H[S ] is the concept class H
restricted to the set of points S . For integer n and class H, let
H[n] = max|S |=n |H[S ]|; this is called the growth function of H.

The growth function of a class is also called shatter function or
shatter coefficient.
Fill in the blanks:

S is shattered by H iff |H[S ]| = 2|S|.
The VC-dimension of H is the largest n such that H[n] =2n.
For the case of axis-parallel rectangles, H[n] =O(n4).
For linear separators in 2 dimensions, VCdim(H) =3.
For linear separators in 2 dimensions, H[n] =O(n2).
For any H, VCdim(H) ≤log2(|H|).
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Definition (Shattering)

Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A ⊆ S there exists some h ∈ H that labels
all examples in A as positive and all examples in S \ A as negative.

Definition (VC Dimension)

The VC-dimension of H is the size of the largest set shattered by H.

Definition (Growth function)

Given a set S of examples and a concept class H, let
H[S ] = {h ∩ S : h ∈ H}. That is, H[S ] is the concept class H
restricted to the set of points S . For integer n and class H, let
H[n] = max|S |=n |H[S ]|; this is called the growth function of H.

We can now discuss generalization bounds just in terms of growth
function and VC dimension (instead of in terms of |H|).
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Theorem

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size

n ≥ 2

ε
[log2 (2H[2n]) + log2 (1/δ)] .

then with probability at least (1− δ), every h ∈ H with error
errD(h) ≥ ε has errS(h) > 0. Equivalently, every h ∈ H with
errS(h) = 0 has errD(h) < ε.

Theorem

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size

n ≥ 8

ε2
[log2 (2H[2n]) + log2 (2/δ)] .

then with probability at least (1− δ), every h ∈ H will have
|errD(h)− errS(h)| ≤ ε.
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Theorem

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size n ≥ 2

ε [log2 (2H[2n]) + log2 (1/δ)] . then with
probability at least (1− δ), every h ∈ H with error errD(h) ≥ ε has
errS(h) > 0. Equivalently, every h ∈ H with errS(h) = 0 has
errD(h) < ε.

Theorem

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size n ≥ 8

ε2
[log2 (2H[2n]) + log2 (2/δ)] . then with

probability at least (1− δ), every h ∈ H will have
|errD(h)− errS(h)| ≤ ε.

Theorem (Sauer’s Lemma)

If VCdim(H) = d , then H[n] ≤
∑d

i=0

(n
i

)
≤
(
en
d

)d
.

Theorem

For any hypothesis class H and distribution D, a training sample S of
size

O

(
1

ε
[VCdim(H) log (1/ε) + log 1/δ]

)
is sufficient to ensure that with probability at least (1− δ), every
h ∈ H with errD(h) ≥ ε has errS(h) > 0.
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