COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

< ≣ ▶

Machine Learning: Generalization

문 🕨 🗉 문

Theorem

Let \mathcal{H} be a hypothesis class and let $\varepsilon, \delta > 0$. If a training set S of size

$$n \geq rac{1}{arepsilon}(\ln |\mathcal{H}| + \ln 1/\delta),$$

is drawn from distribution D, then with probability at least $(1 - \delta)$ every $h \in \mathcal{H}$ with true error $\operatorname{err}_{D}(h) \geq \varepsilon$ has training error $\operatorname{err}_{S}(h) > 0$. Equivalently, with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with training error 0 has true error at most ε .

Theorem

Let \mathcal{H} be a hypothesis class and let $\varepsilon, \delta > 0$. If a training set S of size

$$n \geq rac{1}{arepsilon}(\ln |\mathcal{H}| + \ln 1/\delta),$$

is drawn from distribution D, then with probability at least $(1 - \delta)$ every $h \in \mathcal{H}$ with true error $\operatorname{err}_D(h) \geq \varepsilon$ has training error $\operatorname{err}_S(h) > 0$. Equivalently, with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with training error 0 has true error at most ε .

- The above result is called the PAC-learning guarantee since it states that if we can find an h ∈ H consistent with the sample, then this h is Probably Approximately Correct.
- What if we manage to find a hypothesis with small disagreement on the sample? Can we say that the hypothesis will have small true error?

Theorem

Let \mathcal{H} be a hypothesis class and let $\varepsilon, \delta > 0$. If a training set S of size

$$n \geq rac{1}{arepsilon}(\ln |\mathcal{H}| + \ln \left(1/\delta
ight)),$$

is drawn from distribution D, then with probability at least $(1 - \delta)$ every $h \in \mathcal{H}$ with true error $\operatorname{err}_D(h) \ge \varepsilon$ has training error $\operatorname{err}_S(h) > 0$. Equivalently, with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with training error 0 has true error at most ε .

Theorem (Uniform convergence)

Let \mathcal{H} be a hypothesis class and let $\varepsilon, \delta > 0$. If a training set S of size

$$n \geq rac{1}{2arepsilon^2} (\ln |\mathcal{H}| + \ln (2/\delta)),$$

is drawn from distribution D, then with probability at least $(1 - \delta)$ every $h \in \mathcal{H}$ satisfies $|err_D(h) - err_S(h)| \le \varepsilon$.

Theorem

Let \mathcal{H} be a hypothesis class and let $\varepsilon, \delta > 0$. If a training set S of size

$$n \geq rac{1}{arepsilon}(\ln |\mathcal{H}| + \ln \left(1/\delta
ight)),$$

is drawn from distribution D, then with probability at least $(1 - \delta)$ every $h \in \mathcal{H}$ with true error $\operatorname{err}_D(h) \geq \varepsilon$ has training error $\operatorname{err}_S(h) > 0$. Equivalently, with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with training error 0 has true error at most ε .

Theorem (Uniform convergence)

Let \mathcal{H} be a hypothesis class and let $\varepsilon, \delta > 0$. If a training set S of size

$$n \geq rac{1}{2arepsilon^2} (\ln |\mathcal{H}| + \ln (2/\delta))$$

is drawn from distribution D, then with probability at least $(1 - \delta)$ every $h \in \mathcal{H}$ satisfies $|err_D(h) - err_S(h)| \leq \varepsilon$.

• The above theorem essentially means that conditioned on *S* being sufficiently large, good performance on *S* will translate to good performance on *D*.

Theorem (Uniform convergence)

Let \mathcal{H} be a hypothesis class and let $\varepsilon, \delta > 0$. If a training set S of size

$$n \geq rac{1}{2arepsilon^2} (\ln |\mathcal{H}| + \ln (2/\delta)),$$

is drawn from distribution D, then with probability at least $(1 - \delta)$ every $h \in \mathcal{H}$ satisfies $|err_D(h) - err_S(h)| \leq \varepsilon$.

• The above theorem follows from the following tail inequality.

Theorem (Chernoff-Hoeffding bound)

Let $x_1, ..., x_n$ be independent $\{0, 1\}$ random variables such that $\forall i, \Pr[x_i = 1] = p$. Let $s = \sum_{i=1}^n x_i$. For any $0 \le \alpha \le 1$,

$$\Pr[s/n > p + \alpha] \le e^{-2n\alpha^2}$$
 and $\Pr[s/n$

- 4 同 ト - 4 目 ト

- Let us do a case study of *Learning Disjunctions*.
- Consider a binary classification context where the instance space $\mathcal{X} = \{0,1\}^d.$
- Suppose we believe that the target concept is a disjunction over a subset of features. For example, c^{*} = {x : x₁ ∨ x₁₀ ∨ x₅₀}.
- What is the size of the concept class \mathcal{H} ?

- Let us do a case study of *Learning Disjunctions*.
- Consider a binary classification context where the instance space $\mathcal{X} = \{0,1\}^d.$
- Suppose we believe that the target concept is a disjunction over a subset of features. For example, c^{*} = {x : x₁ ∨ x₁₀ ∨ x₅₀}.
- What is the size of the concept class $\mathcal{H}? \ |\mathcal{H}| = 2^d$
- So, if the sample size |S| = ¹/_ε(d ln 2 + ln (1/δ)) then good performance on the training set generalizes to the instance space.
- Question: Suppose the target concept is indeed a disjunction, then given any training set S is there an algorithm that can at least output a disjunction consistent with S.

• <u>Occam's razor</u>: William of Occam around 1320AD stated that one should prefer simpler explanations over more complicated ones.

∃ ► < ∃ ►</p>

- <u>Occam's razor</u>: William of Occam around 1320AD stated that one should prefer simpler explanations over more complicated ones.
- What do we mean by a rule being simple?
- Different people may have different description languages for describing rules.
- How many rules can be described using fewer than b bits?

4 B b 4 B b

- <u>Occam's razor</u>: William of Occam around 1320AD stated that one should prefer simpler explanations over more complicated ones.
- What do we mean by a rule being simple?
- Different people may have different description languages for describing rules.
- How many rules can be described using fewer than b bits? $< 2^{b}$

Theorem (Occam's razor)

Fix any description language, and consider a training sample S drawn from distribution D. With probability at least $(1 - \delta)$ any rule h consistent with S that can be described in this language using fewer than b bits will have $\operatorname{err}_D(h) \leq \varepsilon$ for $|S| = \frac{1}{\varepsilon}(b \ln 2 + \ln(1/\delta))$. Equivalently, with probability at least $(1 - \delta)$ all rules that can be described in fewer than b bits will have $\operatorname{err}_D(h) \leq \frac{b \ln(2) + \ln(1/\delta)}{|S|}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fix any description language, and consider a training sample *S* drawn from distribution *D*. With probability at least $(1 - \delta)$ any rule *h* consistent with *S* that can be described in this language using fewer than *b* bits will have $\operatorname{err}_D(h) \leq \varepsilon$ for $|S| = \frac{1}{\varepsilon}(b \ln 2 + \ln(1/\delta))$. Equivalently, with probability at least $(1 - \delta)$ all rules that can be described in fewer than *b* bits will have $\operatorname{err}_D(h) \leq \frac{b \ln(2) + \ln(1/\delta)}{|S|}$.

- The theorem is valid irrespective of the description language.
- It does not say that complicated rules are bad.
- It suggests that Occam's rule is a good policy since simple rules are unlikely to fool us since there are not too many of them.

- 4 B b - 4 B b

Fix any description language, and consider a training sample S drawn from distribution D. With probability at least $(1 - \delta)$ any rule h consistent with S that can be described in this language using fewer than b bits will have $\operatorname{err}_D(h) \leq \varepsilon$ for $|S| = \frac{1}{\varepsilon}(b \ln 2 + \ln (1/\delta))$. Equivalently, with probability at least $(1 - \delta)$ all rules that can be described in fewer than b bits will have $\operatorname{err}_D(h) \leq \frac{b \ln (2) + \ln (1/\delta)}{|S|}$.

• Case study: Decision trees

Fix any description language, and consider a training sample S drawn from distribution D. With probability at least $(1 - \delta)$ any rule h consistent with S that can be described in this language using fewer than b bits will have $\operatorname{err}_D(h) \leq \varepsilon$ for $|S| = \frac{1}{\varepsilon}(b \ln 2 + \ln (1/\delta))$. Equivalently, with probability at least $(1 - \delta)$ all rules that can be described in fewer than b bits will have $\operatorname{err}_D(h) \leq \frac{b \ln (2) + \ln (1/\delta)}{|S|}$.

- Case study: Decision trees
- What is the bit-complexity of describing a decision tree (in *d* variables) of size *k*?

Fix any description language, and consider a training sample S drawn from distribution D. With probability at least $(1 - \delta)$ any rule h consistent with S that can be described in this language using fewer than b bits will have $\operatorname{err}_D(h) \leq \varepsilon$ for $|S| = \frac{1}{\varepsilon}(b \ln 2 + \ln(1/\delta))$. Equivalently, with probability at least $(1 - \delta)$ all rules that can be described in fewer than b bits will have $\operatorname{err}_D(h) \leq \varepsilon \operatorname{for} |S| = \frac{1}{\varepsilon}(b \ln 2 + \ln(1/\delta))$.

- Case study: Decision trees
- What is the bit-complexity of describing a decision tree (in d variables) of size k? O(k log d)
- So, the true error is low if we can produce a consistent tree with fewer than $\frac{\varepsilon|S|}{\log d}$ nodes.

- We have seen that for good generalization, the size of the training set should depend on log₂ (*H*) that in some sense captures the complexity of the hypothesis class.
- Let us try to understand this using a simple example. Consider the age-versus-salary data.
 - There are 100 possible ages and 1000 different salaries. This makes the instance space ${\cal X}$ of size 10^5 .
 - The hypothesis class consists of axis-parallel rectangles. What is the size of \mathcal{H} ?

- We have seen that for good generalization, the size of the training set should depend on log₂ (*H*) that in some sense captures the complexity of the hypothesis class.
- Let us try to understand this using a simple example. Consider the age-versus-salary data.
 - There are 100 possible ages and 1000 different salaries. This makes the instance space $\mathcal X$ of size 10^5 .
 - The hypothesis class consists of axis-parallel rectangles. What is the size of ${\cal H}?~|{\cal H}|=10^{10}$
 - Suppose there are only N = 100 employed people for which we know the data. Then for the purpose of generalization, we may use $|\mathcal{H}| \leq N^4$.
- Question: Is there is a tighter measure of complexity of a hypothesis class with respect to generalization?
 - Independent of the size of the support of the distribution *D*.

同下 イヨト イヨト

- Question: Is there is a tighter measure of complexity of a hypothesis class with respect to generalization?
 - Independent of the size of the support of the distribution *D*.

Definition (Shattering)

Given a set *S* of examples and a concept class \mathcal{H} , we say that *S* is shattered by \mathcal{H} if for every $A \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in *A* as positive and all examples in *S* \ *A* as negative.

Definition (VC Dimension)

The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

- - E N - E N

Given a set *S* of examples and a concept class \mathcal{H} , we say that *S* is shattered by \mathcal{H} if for every $A \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in *A* as positive and all examples in *S* \ *A* as negative.

Definition (VC Dimension)

The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

- Example: Consider the hypothesis class \mathcal{H} of axis-parallel rectangles.
- Question: What is the VC-dimension of \mathcal{H} ?
 - Question: Does there exist a set of 4 points that $\mathcal H$ can shatter?

□ ► < □ ► < □ ►</p>

Given a set *S* of examples and a concept class \mathcal{H} , we say that *S* is shattered by \mathcal{H} if for every $A \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in *A* as positive and all examples in *S* \ *A* as negative.

Definition (VC Dimension)

The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

- Example: Consider the hypothesis class \mathcal{H} of axis-parallel rectangles.
- Question: What is the VC-dimension of \mathcal{H} ?
 - Question: Does there exist a set of 4 points that ${\cal H}$ can shatter? $\overline{{\sf Y}_{es}}$
 - Question: Does there exist a set of 5 points that ${\cal H}$ can shatter?

直 ト イヨト イヨト

Given a set *S* of examples and a concept class \mathcal{H} , we say that *S* is shattered by \mathcal{H} if for every $A \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in *A* as positive and all examples in *S* \ *A* as negative.

Definition (VC Dimension)

The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

- Example: Consider the hypothesis class \mathcal{H} of axis-parallel rectangles.
- Question: What is the VC-dimension of \mathcal{H} ? VC-dim $(\mathcal{H}) = 4$
 - Question: Does there exist a set of 4 points that ${\cal H}$ can shatter? $\overline{{\sf Y}_{es}}$
 - Question: Does there exist a set of 5 points that ${\cal H}$ can shatter? No

直 ト イヨト イヨト

Given a set *S* of examples and a concept class \mathcal{H} , we say that *S* is shattered by \mathcal{H} if for every $A \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in *A* as positive and all examples in *S* \ *A* as negative.

Definition (VC Dimension)

The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

Definition (Growth function)

Given a set *S* of examples and a concept class \mathcal{H} , let $\mathcal{H}[S] = \{h \cap S : h \in \mathcal{H}\}$. That is, $\mathcal{H}[S]$ is the concept class \mathcal{H} restricted to the set of points *S*. For integer *n* and class \mathcal{H} , let $\mathcal{H}[n] = \max_{|S|=n} |\mathcal{H}[S]|$; this is called the growth function of \mathcal{H} .

直 ト イヨ ト イヨト

Given a set S of examples and a concept class \mathcal{H} , we say that S is shattered by \mathcal{H} if for every $A \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in A as positive and all examples in $S \setminus A$ as negative.

Definition (VC Dimension)

The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

Definition (Growth function)

Given a set S of examples and a concept class \mathcal{H} , let $\mathcal{H}[S] = \{h \cap S : h \in \mathcal{H}\}$. That is, $\mathcal{H}[S]$ is the concept class \mathcal{H} restricted to the set of points S. For integer n and class \mathcal{H} , let $\mathcal{H}[n] = \max_{|S|=n} |\mathcal{H}[S]|$; this is called the growth function of \mathcal{H} .

• The growth function of a class is also called shatter function or shatter coefficient.

Given a set S of examples and a concept class \mathcal{H} , we say that S is shattered by \mathcal{H} if for every $A \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in A as positive and all examples in $S \setminus A$ as negative.

Definition (VC Dimension)

The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

Definition (Growth function)

Given a set *S* of examples and a concept class \mathcal{H} , let $\mathcal{H}[S] = \{h \cap S : h \in \mathcal{H}\}$. That is, $\mathcal{H}[S]$ is the concept class \mathcal{H} restricted to the set of points *S*. For integer *n* and class \mathcal{H} , let $\mathcal{H}[n] = \max_{|S|=n} |\mathcal{H}[S]|$; this is called the growth function of \mathcal{H} .

- Fill in the blanks:
 - S is shattered by H iff |H[S]| = ____?
 - The VC-dimension of H is the largest n such that H[n] = ____?
 - For the case of axis-parallel rectangles, H[n] = ??
 - For linear separators in 2 dimensions, VCdim(H) = ____?
 - For linear separators in 2 dimensions, H[n] = ??
 - For any \mathcal{H} , $VCdim(\mathcal{H}) \leq ___?$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Shattering)

Given a set S of examples and a concept class \mathcal{H} , we say that S is shattered by \mathcal{H} if for every $A \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in A as positive and all examples in $S \setminus A$ as negative.

Definition (VC Dimension)

The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

Definition (Growth function)

Given a set *S* of examples and a concept class \mathcal{H} , let $\mathcal{H}[S] = \{h \cap S : h \in \mathcal{H}\}$. That is, $\mathcal{H}[S]$ is the concept class \mathcal{H} restricted to the set of points *S*. For integer *n* and class \mathcal{H} , let $\mathcal{H}[n] = \max_{|S|=n} |\mathcal{H}[S]|$; this is called the growth function of \mathcal{H} .

- The growth function of a class is also called shatter function or shatter coefficient.
- Fill in the blanks:
 - S is shattered by \mathcal{H} iff $|\mathcal{H}[S]| = \underline{2^{|S|}}$.
 - The VC-dimension of \mathcal{H} is the largest *n* such that $\mathcal{H}[n] = \underline{2^n}$.
 - For the case of axis-parallel rectangles, $\mathcal{H}[n] = O(n^4)$.
 - For linear separators in 2 dimensions, $VCdim(\overline{H}) = \underline{3}$.
 - For linear separators in 2 dimensions, $\mathcal{H}[n] = O(n^2)$.
 - For any \mathcal{H} , $VCdim(\mathcal{H}) \leq \underline{\log_2(|\mathcal{H}|)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Given a set S of examples and a concept class \mathcal{H} , we say that S is shattered by \mathcal{H} if for every $A \subseteq S$ there exists some $h \in \mathcal{H}$ that labels all examples in A as positive and all examples in $S \setminus A$ as negative.

Definition (VC Dimension)

The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

Definition (Growth function)

Given a set S of examples and a concept class \mathcal{H} , let $\mathcal{H}[S] = \{h \cap S : h \in \mathcal{H}\}$. That is, $\mathcal{H}[S]$ is the concept class \mathcal{H} restricted to the set of points S. For integer n and class \mathcal{H} , let $\mathcal{H}[n] = \max_{|S|=n} |\mathcal{H}[S]|$; this is called the growth function of \mathcal{H} .

• We can now discuss generalization bounds just in terms of growth function and VC dimension (instead of in terms of $|\mathcal{H}|$).

Theorem

For any hypothesis class $\mathcal H$ and distribution D, if a training sample S is drawn from D of size

$$n \geq rac{2}{arepsilon} \left[\log_2\left(2\mathcal{H}[2n]\right) + \log_2\left(1/\delta
ight)
ight].$$

then with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with error $err_D(h) \ge \varepsilon$ has $err_S(h) > 0$. Equivalently, every $h \in \mathcal{H}$ with $err_S(h) = 0$ has $err_D(h) < \varepsilon$.

Theorem

For any hypothesis class $\mathcal H$ and distribution D, if a training sample S is drawn from D of size

$$n \geq \frac{8}{\varepsilon^2} \left[\log_2 \left(2\mathcal{H}[2n] \right) + \log_2 \left(2/\delta \right) \right].$$

then with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ will have $|err_D(h) - err_S(h)| \le \varepsilon$.

Theorem

For any hypothesis class \mathcal{H} and distribution D, if a training sample S is drawn from D of size $n \geq \frac{2}{\varepsilon} [\log_2(2\mathcal{H}[2n]) + \log_2(1/\delta)]$. then with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with error $err_D(h) \geq \varepsilon$ has $err_S(h) > 0$. Equivalently, every $h \in \mathcal{H}$ with $err_S(h) = 0$ has $err_D(h) < \varepsilon$.

Theorem

For any hypothesis class \mathcal{H} and distribution D, if a training sample S is drawn from D of size $n \geq \frac{8}{\varepsilon^2} [\log_2 (2\mathcal{H}[2n]) + \log_2 (2/\delta)]$. then with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ will have $|err_D(h) - err_S(h)| \leq \varepsilon$.

Theorem (Sauer's Lemma)

If
$$VCdim(\mathcal{H}) = d$$
, then $\mathcal{H}[n] \leq \sum_{i=0}^{d} {n \choose i} \leq \left(\frac{en}{d}\right)^{d}$.

Theorem

For any hypothesis class ${\mathcal H}$ and distribution D, a training sample S of size

$$O\left(rac{1}{arepsilon}\left[\textit{VCdim}(\mathcal{H})\log\left(1/arepsilon
ight)+\log{1/\delta}
ight]
ight)$$

is sufficient to ensure that with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with $\operatorname{err}_{D}(h) \geq \varepsilon$ has $\operatorname{err}_{S}(h) > 0$.

End

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

・ロト ・回ト ・ヨト ・ヨト

Ξ