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Machine Learning
Generalization bounds

@ One of the main tasks in Machine Learning is classification.
o The goal is to learn a rule for labeling data (given a few labeled

examples).
@ The data comes from an instance space X’ and typically X = R?
or X = {0,1}9.
@ So, a data item is typically described by a d-dimensional feature
vector.

o For example in spam classification, the features could be the
presence (or absence) of certain words.

o For performing the learning task, the learning algorithm is given a
set S of training examples that are items from X along with their
correct classification.

@ The main idea is generalization. That is, use one set of data to
perform well on new data that the learning algorithm has not
seen.
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@ One of the main tasks in Machine Learning is classification.
o The goal is to learn a rule for labeling data (given a few labeled

examples).
o The data comes from an instance space X and typically X = RY
or X = {0,1}9.
@ So, a data item is typically described by a d-dimensional feature
vector.

o For example in spam classification, the features could be the
presence (or absence) of certain words.

o For performing the learning task, the learning algorithm is given a
set S of training examples that are items from X along with their
correct classification.

@ The main idea is generalization. That is, use one set of data to
perform well on new data that the learning algorithm has not
seen.

@ The hope is that if the training data is representative of what the
future data will look like, then we can try learning some simple
rules that work for the training data and perhaps that will work
well for the future data.
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Machine Learning
Generalization bounds

@ Let us now try to formalize the ideas in the previous slide with

respect to binary classification.
o Future data being representative of the training set:

o There is a distribution D over the instance space X.

o Training set S consists of points drawn independently at random
from D.

o The new points are also drawn from D.

@ A target concept w.r.t binary classification is simply a subset of
c* C X denoting the positive data items of the classification task.

@ The learning algorithm's goal is to produce a a set h C X" called
hypothesis that is close to ¢c* w.r.t. distribution D.

@ The true error of hypothesis h is defined as errp(h) = Pr[hAc*],
where A denotes symmetric difference and the probability is over
the distribution D.

@ The goal is to produce a hypothesis h with low true error.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Machine Learning
Generalization bounds

Let us now try to formalize the ideas in the previous slide with
respect to binary classification.
Future data being representative of the training set:

o There is a distribution D over the instance space X.

o Training set S consists of points drawn independently at random

from D.

o The new points are also drawn from D.
A target concept w.r.t binary classification is simply a subset of
c* C X denoting the positive data items of the classification task.
The learning algorithm's goal is to produce a a set h C X called
hypothesis that is close to ¢c* w.r.t. distribution D.
The true error of hypothesis h is defined as errp(h) = Pr[hAc*],
where A denotes symmetric difference and the probability is over
the distribution D.
The goal is to produce a hypothesis h with low true error.

The training error (or empirical error) of a hypothesis h is defined
_ |SN(hAc*)]
as errs(h) = -
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@ Let us now try to formalize the ideas in the previous slide with
respect to binary classification.
o Future data being representative of the training set:

o There is a distribution D over the instance space X

o Training set S consists of points drawn independently at random
from D.

o The new points are also drawn from D.

o A target concept w.r.t binary classification is simply a subset of
c* C X denoting the positive data items of the classification task.

o The learning algorithm’s goal is to produce a a set h C X’ called
hypothesis that is close to ¢* w.r.t. distribution D.

@ The true error of hypothesis h is defined as errp(h) = Pr[hAc*],
where A denotes symmetric difference and the probability is over
the distribution D.

o The goal is to produce a hypothesis h with low true error.

@ The training error (or empirical error) of a hypothesis h is defined

_ 1Sn(hAcH)|
as errs(h) = S

@ Question: Is it possible that the true error of a hypothesis is large

but the training error is small?
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@ Let us now try to formalize the ideas in the previous slide with
respect to binary classification.

o Future data being representative of the training set:

o There is a distribution D over the instance space X

o Training set S consists of points drawn independently at random
from D.

o The new points are also drawn from D.

o A target concept w.r.t binary classification is simply a subset of
c* C X denoting the positive data items of the classification task.

o The learning algorithm’s goal is to produce a a set h C X’ called
hypothesis that is close to ¢* w.r.t. distribution D.

@ The true error of hypothesis h is defined as errp(h) = Pr[hAc*],
where A denotes symmetric difference and the probability is over
the distribution D.

o The goal is to produce a hypothesis h with low true error.

@ The training error (or empirical error) of a hypothesis h is defined

_ 1Sn(hAcH)|
as errs(h) = S

@ Question: Is it possible that the true error of a hypothesis is large

but the training error is small? Unlikely if S is sufficiently large
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o Future data being representative of the training set:
o There is a distribution D over the instance space X.
e Training set S consists of points drawn independently at random
from D.
o The new points are also drawn from D.

@ A target concept w.r.t binary classification is simply a subset of
c* C X denoting the positive data items of the classification task.

@ The learning algorithm’s goal is to produce a a set h C X called
hypothesis that is close to ¢* w.r.t. distribution D.

@ The true error of hypothesis h is defined as errp(h) = Pr[hAc*],
where A denotes symmetric difference and the probability is over
the distribution D.

@ The goal is to produce a hypothesis h with low true error.

o The training error (or empirical error) of a hypothesis h is defined

_ [Sn(hAch)|
as errs(h) = e

o Question: Is it possible that the true error of a hypothesis is large
but the training error is small? Unlikely if S is sufficiently large

@ Im many learning scenarios, a hypothesis is not an arbitrary
subset of X’ but constrained to be a member of a hypothesis class
(also called concept class) denoted by H.

o Consider example X = {(—-1,-1),(-1,1),(1,-1),(1,1)} and %
consists of all subsets that can be formed using a linear separator.
What is |H|?
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o Future data being representative of the training set:
o There is a distribution D over the instance space X.
o Training set S consists of points drawn independently at random
from D.
o The new points are also drawn from D.
o A target concept w.r.t binary classification is simply a subset of
c* C X denoting the positive data items of the classification task.
@ The learning algorithm's goal is to produce a a set h C X called
hypothesis that is close to ¢c* w.r.t. distribution D.
@ The true error of hypothesis h is defined as errp(h) = Pr[hAc*],
where A denotes symmetric difference and the probability is over
the distribution D.
The goal is to produce a hypothesis h with low true error.
The training error (or empirical error) of a hypothesis h is defined
as errs(h) = %.
o Question: Is it possible that the true error of a hypothesis is large
but the training error is small? Unlikely if S is sufficiently large
@ Im many learning scenarios, a hypothesis is not an arbitrary
subset of X but constrained to be a member of a hypothesis class
(also called concept class) denoted by H.
o We would like to argue that for all h € H the probability that
there is a large gap between true error and training error is small.
o Question: How large should S be the above to be true?
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Generalization bounds

Theorem

Let H be a hypothesis class and let £,6 > 0. If a training set S of size
n> X(in H] +In1/s),
€

is drawn from distribution D, then with probability at least (1 — ¢)
every h € H with true error errp(h) > ¢ has training error errs(h) > 0.
Equivalently, with probability at least (1 — §), every h € H with
training error 0 has true error at most €.
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Generalization bounds

Theorem
Let H be a hypothesis class and let £,6 > 0. If a training set S of size

= %(m 4] +In 1/5),

is drawn from distribution D, then with probability at least (1 — ¢)
every h € H with true error errp(h) > ¢ has training error errs(h) > 0.
Equivalently, with probability at least (1 — §), every h € H with
training error O has true error at most €.

@ The above result is called the PAC-learning guarantee since it
states that if we can find an h € H consistent with the sample,
then this h is Probably Approximately Correct.

@ What if we manage to find a hypothesis with small disagreement
on the sample? Can we say that the hypothesis will have small
true error?
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Generalization bounds

Let H be a hypothesis class and let €,0 > 0. If a training set S of size
1
n> g(ln |H| + In(1/6)),

is drawn from distribution D, then with probability at least (1 — ¢)
every h € H with true error errp(h) > e has training error errs(h) > 0.
Equivalently, with probability at least (1 — ), every h € H with
training error O has true error at most ¢.

Theorem (Uniform convergence)

Let H be a hypothesis class and let €,0 > 0. If a training set S of size

n> —(In |H| +1n(2/6)),

is drawn from distribution D, then with probability at least (1 — §)
every h € H satisfies |errp(h) — errs(h)| < e.
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Let H be a hypothesis class and let €, > 0. If a training set S of size

n> é(m M| +1n (1/5)),

is drawn from distribution D, then with probability at least (1 — 0)
every h € H with true error errp(h) > ¢ has training error errs(h) > 0.
Equivalently, with probability at least (1 — 6), every h € H with
training error O has true error at most .

Theorem (Uniform convergence)
Let H be a hypothesis class and let €, > 0. If a training set S of size

n> 2—22(In |H| + In(2/6)),

is drawn from distribution D, then with probability at least (1 — 4)
every h € H satisfies |errp(h) — errs(h)| <e.

v

@ The above theorem essentially means that conditioned on S being
sufficiently large, good performance on S will translate to good
performance on D.
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Theorem (Uniform convergence)

Let H be a hypothesis class and let £, > 0. If a training set S of size

n> —(In |H| + In(2/6)),

is drawn from distribution D, then with probability at least (1 — ¢)
every h € H satisfies |errp(h) — errs(h)| < e.

@ The above theorem follows from the following tail inequality.

Theorem (Chernoff-Hoeffding bound)

Let xq, ..., x, be independent {0,1} random variables such that
Vi,Prix; =1] = p. Let s =3 1 x;. Forany0 <a <1,

Pr[s/n>p+a] < e 2% and Pr[s/n<p—a] < i
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Machine Learning
Generalization bounds

@ Let us do a case study of Learning Disjunctions.

o Consider a binary classification context where the instance space
X ={0,1}¢.

@ Suppose we believe that the target concept is a disjunction over a
subset of features. For example, ¢* = {x: x1 V x10 V x50}

@ What is the size of the concept class H?
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@ Let us do a case study of Learning Disjunctions.

o Consider a binary classification context where the instance space
X ={0,1}¢.

@ Suppose we believe that the target concept is a disjunction over a

subset of features. For example, ¢* = {x: x1 V x10 V x50}

What is the size of the concept class H? |H| = 29

So, if the sample size |S| = %(dln 2+1n(1/0)) then good

performance on the training set generalizes to the instance space.

Question: Suppose the target concept is indeed a disjunction,

then given any training set S is there an algorithm that can at

least output a disjunction consistent with S.

e o

[
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Machine Learning
Generalization bounds

@ Occam’s razor: William of Occam around 1320AD stated that
one should prefer simpler explanations over more complicated
ones.
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Machine Learning
Generalization bounds
@ Occam'’s razor: William of Occam around 1320AD stated that
one should prefer simpler explanations over more complicated
ones.
@ What do we mean by a rule being simple?
o Different people may have different description languages for

describing rules.
@ How many rules can be described using fewer than b bits?
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@ Occam'’s razor: William of Occam around 1320AD stated that
one should prefer simpler explanations over more complicated
ones.

@ What do we mean by a rule being simple?

o Different people may have different description languages for
describing rules.

o How many rules can be described using fewer than b bits? < 2°

Theorem (Occam's razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1 — &) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errp(h) < e for |S| = (bIn2+In (1/5)).
Equivalently, with probability at least (1 — §) all rules that can be
described in fewer than b bits will have errp(h) < %‘F(w.

y
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Theorem (Occam's razor)

Fix any description language, and consider a training sample S drawn
from distribution D. With probability at least (1 — &) any rule h
consistent with S that can be described in this language using fewer
than b bits will have errp(h) < e for |S| = L(bIn2+1In (1/5)).
Equivalently, with probability at least (1 — §) all rules that can be
described in fewer than b bits will have errp(h) < W.

@ The theorem is valid irrespective of the description language.

@ It does not say that complicated rules are bad.

o It suggests that Occam’s rule is a good policy since simple rules
are unlikely to fool us since there are not too many of them.
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