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Spectral Graph Theory
Basic results

We shall work with d-regular undirected graphs.
It will be convenient to work with the matrix L = I − 1

dA instead
of the adjacency matrix A.
The matrix L defined above is called the Normalized Laplacian
Matrix of the graph.
We prove the following basic results of spectral graph theory.

Theorem

Let G be a d-regular undirected graph, and L = I − 1
dA be its

normalized Laplacian matrix. Let λ1 ≤ λ2 ≤ ... ≤ λn be the real
eigenvalues of L with multiplicities. Then

1 λ1 = 0 and λn ≤ 2.
2 λk = 0 if and only if G has at least k connected components.
3 λn = 2 if and only if at least one of the connected components of

G is bipartite.
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Spectral Graph Theory
Cheeger’s Inequality

Given a d-regular undirected graph with normalised graph
laplacian L = I − 1

dA having eigenvalues
0 = λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2.
We know that the second eigenvalue λ2 = 0 if and only if G has
at least two connected components.
In other words, the second eigenvalue λ2 = 0 if and only if
φ(G ) = 0.
We will prove an approximate version of this result that says that
λ2 is small if and only if φ(G ) is small.

Theorem (Cheeger’s Inequality)

λ2
2 ≤ φ(G ) ≤

√
2 · λ2.
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Spectral Graph Theory
Cheeger’s Inequality

Theorem (Cheeger’s Inequality)

λ2
2 ≤ φ(G ) ≤

√
2 · λ2.

First we will prove the following direction.

Lemma

λ2 ≤ σ(G ) ≤ 2φ(G ).
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

λ2 ≤ σ(G ) ≤ 2φ(G ).

Proof sketch

We can write:

σ(G ) = min
x∈{0,1}n−{0,1}

∑
{u,v}∈E |xu − xv |

d
n

∑
{u,v} |xu − xv |

= min
x∈{0,1}n−{0,1}

∑
{u,v}∈E (xu − xv )2

d
n

∑
{u,v}(xu − xv )2
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

λ2 ≤ σ(G ) ≤ 2φ(G ).

Proof sketch

We can write:

σ(G ) = min
x∈{0,1}n−{0,1}

∑
{u,v}∈E (xu − xv )2

d
n

∑
{u,v}(xu − xv )2

Also, we have

λ2 = min
x∈Rn−{0},x⊥1

∑
{u,v}∈E (xu − xv )2

d ·
∑

v x
2
v
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

λ2 ≤ σ(G ) ≤ 2φ(G ).

Proof sketch

We can write:

σ(G ) = min
x∈{0,1}n−{0,1}

∑
{u,v}∈E (xu − xv )2

d
n

∑
{u,v}(xu − xv )2

Also, we have

λ2 = min
x∈Rn−{0},x⊥1

∑
{u,v}∈E (xu − xv )2

d ·
∑

v x
2
v

?
= min

x∈Rn−{0},x⊥1

∑
{u,v}∈E (xu − xv )2

d
n ·
∑
{u,v}(xu − xv )2
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

λ2 ≤ σ(G ) ≤ 2φ(G ).

Proof sketch
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

λ2 ≤ σ(G ) ≤ 2φ(G ).

Proof sketch

We can write:

σ(G ) = min
x∈{0,1}n−{0,1}

∑
{u,v}∈E (xu − xv )2

d
n

∑
{u,v}(xu − xv )2

Also, we have

λ2 = min
x∈Rn−{0},x⊥1

∑
{u,v}∈E (xu − xv )2

d ·
∑

v x
2
v

= min
x∈Rn−{0},x⊥1

∑
{u,v}∈E (xu − xv )2

d
n ·
∑
{u,v}(xu − xv )2

= min
x∈Rn−{0,1}

∑
{u,v}∈E (xu − xv )2

d
n ·
∑
{u,v}(xu − xv )2

So, λ2 ≤ σ(G ).
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Spectral Graph Theory
Cheeger’s Inequality

Theorem (Cheeger’s Inequality)

λ2
2 ≤ φ(G ) ≤

√
2 · λ2.

First we will prove the following direction.

Lemma

λ2 ≤ σ(G ) ≤ 2φ(G ).

Now, we will prove the other direction.

Lemma

φ(G ) ≤
√

2 · λ2.

We prove the above statement using a constructive argument.
That is, we will give an algorithm that outputs a cut S in the
given graph G such that φ(S) ≤

√
2 · λ2.
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

φ(G ) ≤
√

2 · λ2.

Spectral Partitioning Algorithm

SpectralPartitioning(G , x)
- Sort the vertices of G in non-increasing order of

value of the vector x. That is, xv1 ≤ xv2 ≤ ... ≤ xvn .
- Let i ∈ {1, ..., n − 1} that minimises

max {φ({v1, ..., vi}), φ({vi+1,...,vn})}
- Output S = {v1, ..., vi}

What is the running time of the above algorithm?
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

φ(G ) ≤
√

2 · λ2.

Spectral Partitioning Algorithm

SpectralPartitioning(G , x)
- Sort the vertices of G in non-increasing order of

value of the vector x. That is, xv1 ≤ xv2 ≤ ... ≤ xvn .
- Let i ∈ {1, ..., n − 1} that minimises

max {φ({v1, ..., vi}), φ({vi+1,...,vn})}
- Output S = {v1, ..., vi}

What is the running time of the above algorithm?
O(|V | log |V |+ |E |)
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

φ(G ) ≤
√

2 · λ2.

Spectral Partitioning Algorithm

SpectralPartitioning(G , x)
- Sort the vertices of G in non-increasing order of

value of the vector x. That is, xv1 ≤ xv2 ≤ ... ≤ xvn .
- Let i ∈ {1, ..., n − 1} that minimises

max {φ({v1, ..., vi}), φ({vi+1,...,vn})}
- Output S = {v1, ..., vi}

Lemma

Let G = (V ,E ) be a d-regular graph, x ∈ R|V | be a vector such that
x⊥1. Let

R(x)
def .
=

∑
{u,v}∈E (xu − xv )2

d ·
∑

v x
2
v

and let S be the output of SpectralPartitioning(G , x). Then
φ(S) ≤

√
2 · R(x).
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

φ(G ) ≤
√

2 · λ2.

Spectral Partitioning Algorithm

SpectralPartitioning(G , x)
- Sort the vertices of G in non-increasing order of

value of the vector x. That is, xv1 ≤ xv2 ≤ ... ≤ xvn .
- Let i ∈ {1, ..., n − 1} that minimises

max {φ({v1, ..., vi}), φ({vi+1,...,vn})}
- Output S = {v1, ..., vi}

Lemma

Let G = (V ,E ) be a d-regular graph, x ∈ R|V | be a vector such that
x⊥1. Let

R(x)
def .
=

∑
{u,v}∈E (xu − xv )2

d ·
∑

v x
2
v

and let S be the output of SpectralPartitioning(G , x). Then
φ(S) ≤

√
2 · R(x).

Claim: Let x be an eigenvector of λ2. Then R(x) = λ2.
This implies that φ(S) ≤

√
2 · λ2.
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Spectral Graph Theory
Cheeger’s Inequality

Spectral Partitioning Algorithm

SpectralPartitioning(G , x)
- Sort the vertices of G in non-increasing order of

value of the vector x. That is, xv1 ≤ xv2 ≤ ... ≤ xvn .
- Let i ∈ {1, ..., n − 1} that minimises

max {φ({v1, ..., vi}), φ({vi+1,...,vn})}
- Output S = {v1, ..., vi}

Lemma

Let G = (V ,E ) be a d-regular graph, x ∈ R|V | be a vector such that
x⊥1. Let

R(x)
def .
=

∑
{u,v}∈E (xu − xv )2

d ·
∑

v x
2
v

and let S be the output of SpectralPartitioning(G , x). Then
φ(S) ≤

√
2 · R(x).

Claim: Let x be an eigenvector of λ2. Then R(x) = λ2.
This implies that φ(S) ≤

√
2 · λ2.

Note that the partitioning algorithm can be thought of as an
approximation algorithm for finding the cut with smallest edge
expansion.
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Spectral Graph Theory
Cheeger’s Inequality

Spectral Partitioning Algorithm

SpectralPartitioning(G , x)
- Sort the vertices of G in non-increasing order of

value of the vector x. That is, xv1 ≤ xv2 ≤ ... ≤ xvn .
- Let i ∈ {1, ..., n − 1} that minimises

max {φ({v1, ..., vi}), φ({vi+1,...,vn})}
- Output S = {v1, ..., vi}

Lemma

Let G = (V ,E ) be a d-regular graph, x ∈ R|V | be a vector such that
x⊥1. Let

R(x)
def .
=

∑
{u,v}∈E (xu − xv )2

d ·
∑

v x
2
v

and let S be the output of SpectralPartitioning(G , x). Then
φ(S) ≤

√
2 · R(x).

We would prove that there exists an i ∈ {1, ..., n − 1} s.t.
φ({1, ..., i}) ≤

√
2R(x) and φ({i + 1, ..., n − 1}) ≤

√
2R(x).
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Spectral Partitioning Algorithm

SpectralPartitioning(G , x)
- Sort the vertices of G in non-increasing order of

value of the vector x. That is, xv1 ≤ xv2 ≤ ... ≤ xvn .
- Let i ∈ {1, ..., n − 1} that minimises

max {φ({v1, ..., vi}), φ({vi+1,...,vn})}
- Output S = {v1, ..., vi}

Lemma

Let G = (V ,E ) be a d-regular graph, x ∈ R|V | be a vector such that
x⊥1. Let

R(x)
def .
=

∑
{u,v}∈E (xu − xv )2

d ·
∑

v x
2
v

and let S be the output of SpectralPartitioning(G , x). Then
φ(S) ≤

√
2 · R(x).

We would prove that there exists an i ∈ {1, ..., n − 1} s.t.
φ({1, ..., i}) ≤

√
2R(x) and φ({i + 1, ..., n − 1}) ≤

√
2R(x).

We will show that there is a distribution D over sets S of the
form {1, ..., i} such that:

ES [|E (S ,V − S)|]
ES [d ·min {|S |, |V − S |}]

≤
√

2R(x)
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

Let G = (V ,E ) be a d-regular graph, x ∈ R|V | be a vector such that
x⊥1. Let

R(x)
def .
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∑
{u,v}∈E (xu − xv )2

d ·
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v x
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and let S be the output of SpectralPartitioning(G , x). Then
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√
2 · R(x).

We would prove that there exists an i ∈ {1, ..., n − 1} s.t.
φ({1, ..., i}) ≤

√
2R(x) and φ({i + 1, ..., n − 1}) ≤

√
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We will show that there is a distribution D over sets S of the
form {1, ..., i} such that:
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ES [d ·min {|S |, |V − S |}]

≤
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

Let G = (V ,E ) be a d-regular graph, x ∈ R|V | be a vector such that
x⊥1. Let

R(x)
def .
=

∑
{u,v}∈E (xu − xv )2

d ·
∑

v x
2
v

and let S be the output of SpectralPartitioning(G , x). Then
φ(S) ≤

√
2 · R(x).

We will show that there is a distribution D over sets S of the
form {1, ..., i} such that:

ES [|E (S ,V − S)|]
ES [d ·min {|S |, |V − S |}]

≤
√

2R(x)

Claim 1: For the remaining proof, it will be safe to assume the
following:

1 xdn/2e = 0
2 x21 + x2n = 1
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Spectral Graph Theory
Cheeger’s Inequality

We will show that there is a distribution D over sets S of the
form {1, ..., i} such that ES [|E(S ,V−S)|]

ES [d ·min {|S |,|V−S|}] ≤
√

2R(x).
Claim 1: For the remaining proof, it will be safe to assume the
following: (1) xdn/2e = 0 and (2) x21 + x2n = 1.
The distribution D over sets S of the form {1, ...i} de defined by
the following randomized process:

Random process

- Pick a real value t in the range [x1, xn] with probability density
function f (t) = 2|t|.
- S ← {i : xi ≤ t}
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Spectral Graph Theory
Cheeger’s Inequality

We will show that there is a distribution D over sets S of the
form {1, ..., i} such that ES [|E(S ,V−S)|]

ES [d ·min {|S |,|V−S|}] ≤
√

2R(x).
Claim 1: For the remaining proof, it will be safe to assume the
following: (1) xdn/2e = 0 and (2) x21 + x2n = 1.
The distribution D over sets S of the form {1, ...i} de defined by
the following randomized process:

Random process

- Pick a real value t in the range [x1, xn] with probability density
function f (t) = 2|t|.
- S ← {i : xi ≤ t}

Claim 2: ES [min {|S |, |V − S |}] =
∑

i x
2
i .
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Spectral Graph Theory
Cheeger’s Inequality

We will show that there is a distribution D over sets S of the
form {1, ..., i} such that ES [|E(S ,V−S)|]

ES [d ·min {|S |,|V−S|}] ≤
√

2R(x).
Claim 1: For the remaining proof, it will be safe to assume the
following: (1) xdn/2e = 0 and (2) x21 + x2n = 1.
The distribution D over sets S of the form {1, ...i} de defined by
the following randomized process:

Random process

- Pick a real value t in the range [x1, xn] with probability density
function f (t) = 2|t|.
- S ← {i : xi ≤ t}

Claim 2: ES [min {|S |, |V − S |}] =
∑

i x
2
i .

Claim 3: Pr[(i , j) is cut by (S ,V − S)] ≤ |xi − xj | · (|xi |+ |xj |).
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Spectral Graph Theory
Cheeger’s Inequality

We will show that there is a distribution D over sets S of the
form {1, ..., i} such that ES [|E(S ,V−S)|]

ES [d ·min {|S |,|V−S|}] ≤
√

2R(x).
Claim 1: For the remaining proof, it will be safe to assume the
following: (1) xdn/2e = 0 and (2) x21 + x2n = 1.
The distribution D over sets S of the form {1, ...i} de defined by
the following randomized process:

Random process

- Pick a real value t in the range [x1, xn] with probability density
function f (t) = 2|t|.
- S ← {i : xi ≤ t}

Claim 2: ES [min {|S |, |V − S |}] =
∑

i x
2
i .

Claim 3: Pr[(i , j) is cut by (S ,V − S)] ≤ |xi − xj | · (|xi |+ |xj |).
Claim 4: The following holds:

ES [|E (S ,V − S)|] ≤
√ ∑
{u,v}∈E

(xi − xj)2 ·
√ ∑
{u,v}∈E

(|xi |+ |xj |)2

≤
√ ∑
{u,v}∈E

(xi − xj)2 · (2d
∑
i

x2i )
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Spectral Graph Theory
Cheeger’s Inequality

The results that we discussed were for d-regular graphs.
Question: Can we get similar results for irregular graphs?
Given an undirected graph G = (V ,E ), let dv denote the degree
of the vertex v .
We can define the Rayleigh quotient of a vector x ∈ R|V | as:

RG (x) =

∑
{u,v}∈E (xu − xv )2∑

v dvx
2
v

.

Let D be the diagonal matrix where Du,v = 0 if u 6= v and
Dv ,v = dv .

The Laplacian of G can be defined as LG = I − D−
1
2AD−

1
2 .

Given this, we have

λk = min
k−dim S

{
max
x∈S

xTLGx

xTx

}
Setting y = D−

1
2 x, we have:

λk = min
k−dim S ′

{
max
x∈S ′

yTD
1
2LGD

1
2 y

yTDy

}
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Spectral Graph Theory
Cheeger’s Inequality

The results that we discussed were for d-regular graphs.
Question: Can we get similar results for irregular graphs?
Given an undirected graph G = (V ,E ), let dv denote the degree
of the vertex v .
We can define the Rayleigh quotient of a vector x ∈ R|V | as:

RG (x) =

∑
{u,v}∈E (xu − xv )2∑

v dvx
2
v

.

Let D be the diagonal matrix where Du,v = 0 if u 6= v and
Dv ,v = dv .

The Laplacian of G can be defined as LG = I − D−
1
2AD−

1
2 .

Given this, we have

λk = min
k−dim S

{
max
x∈S

xTLGx

xTx

}
Setting y = D−

1
2 x, we have:

λk = min
k−dim S ′

{
max
x∈S ′

yTD
1
2LGD

1
2 y

yTDy

}

Note that yTD
1
2LGD

1
2 y = yT (D − A)y =

∑
{u,v}(yu − yv )2.

So, λk = mink−dim S {maxy∈S RG (y)}.
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Spectral Graph Theory
Cheeger’s Inequality

The results that we discussed were for d-regular graphs.
Question: Can we get similar results for irregular graphs?
Given an undirected graph G = (V ,E ), let dv denote the degree
of the vertex v .

The point of showing some of the quantities for irregular graphs
was to convince you that the arguments that worked for the
Cheeger’s inequality for d-regular graphs also work for the irregular
graphs and we have:

λ2
2
≤ φ(G ) ≤

√
2λ2.
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Spectral Graph Theory
Cheeger’s Inequality

The results that we discussed were for d-regular graphs.
Question: Can we get similar results for irregular graphs?
Given an undirected graph G = (V ,E ), let dv denote the degree
of the vertex v .

The point of showing some of the quantities for irregular graphs
was to convince you that the arguments that worked for the
Cheeger’s inequality for d-regular graphs also work for the irregular
graphs and we have:

λ2
2
≤ φ(G ) ≤

√
2λ2.

Question: Are there higher order versions of the Cheeger’s
inequality?

What this could mean is that the graph can be partitioned into at
least k clusters iff λk is small.
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Spectral Graph Theory
Cheeger’s Inequality

The results that we discussed were for d-regular graphs.
Question: Can we get similar results for irregular graphs?
Given an undirected graph G = (V ,E ), let dv denote the degree
of the vertex v . Yes
Question: Are there higher order versions of the Cheeger’s
inequality? Yes
The proof of Cheeger’s inequality gave us an algorithm to output
a good cut in the given graph given a second eigenvector of the
Laplacian.
Question: How do we compute a second eigenvector? Can we
estimate the second eigenvector? How well does an approximate
version of the second eigenvector work with respect to giving a
good cut?
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Spectral Graph Theory
Cheeger’s Inequality

The proof of Cheeger’s inequality gave us an algorithm to output
a good cut in the given graph given a second eigenvector of the
Laplacian.
Question: How do we compute a second eigenvector? Can we
estimate the second eigenvector? How well does an approximate
version of the second eigenvector work with respect to giving a
good cut?

Theorem: Let x be a vector such that xTLx ≤ (λ2 + ε)xTx, then
the spectral partitioning algorithm finds a cut (S ,V − S) such that
φ(S) ≤

√
4φ(G ) + 2ε.

Such an approximate eigenvector can be obtained using the power
method.
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End
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