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Spectral Graph Theory:
Eigenvalues and graph properties
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Spectral Graph Theory
Basic results

o We shall work with d-regular undirected graphs.

o It will be convenient to work with the matrix L = [ — %A instead
of the adjacency matrix A.

@ The matrix L defined above is called the Normalized Laplacian
Matrix of the graph.

@ We prove the following basic results of spectral graph theory.

Theorem

Let G be a d-regular undirected graph, and L = | — %A be its
normalized Laplacian matrix. Let \; < Ao < ... < )\, be the real
eigenvalues of L with multiplicities. Then

QO N =0and A\, <2.

@ M\, =0 ifand only if G has at least k connected components.

© )\, =2 if and only if at least one of the connected components of
G is bipartite.

o’
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Spectral Graph Theory
Cheeger’s Inequality

@ Given a d-regular undirected graph with normalised graph
laplacian L =1 — %A having eigenvalues
D= < <. <A\, <2,

o We know that the second eigenvalue A\, = 0 if and only if G has
at least two connected components.

@ In other words, the second eigenvalue A\, = 0 if and only if
#(G) =0.

o We will prove an approximate version of this result that says that
A2 is small if and only if ¢(G) is small.

Theorem (Cheeger's Inequality)

2 <$(G) < V2 X
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Spectral Graph Theory
Cheeger's Inequality

Theorem (Cheeger's Inequality)

2 < ¢(G) < V2N

o First we will prove the following direction.

A2 < 0(G) < 2¢(G). I

Ragesh Jaiswal, ITD COL866: Foundations of Data Science



Spectral Graph Theory
Cheeger’s Inequality

A2 < 0(G) < 2¢(G).

Proof sketch

o We can write:
Z{u,v}eE xu = x|
min g
xe{0,1}7—{0,1} < Z{u’v} Xy — x|
min Z{U,V}EE(XU - Xv)2
xe{0.1}"—{01} 435, 3 (% — x,)?

o(G) =
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Spectral Graph Theory
Cheeger’s Inequality

A2 < 0(G) < 2¢(G).

Proof sketch

o We can write:

. Z{U,V}EE(XU - XV)2
xe{o1}"—{01} 437\ (xy — x,)?

o(G) =

o Also, we have

m Z{U,V}EE(XU - XV)2
x€RM—{0},x L1 d->, x2

A =
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Spectral Graph Theory
Cheeger’s Inequality

A2 < 0(G) < 2¢(G).

Proof sketch

o We can write:

. Z{u,v}eE(xU - XV)2
xe{o1}"—{01} 437\ (xy — x,)?

o(G) =

o Also, we have
2
Xy — Xy
Ay = . Z{U,V}EE( u 5 )
x€RM—{0},xL1 d-y, x2
2 min Z{U,V}GE(XU - XV)2
xeR"—{0}x11 9 . > fuvt (Xu —xv)?
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Spectral Graph Theory
Cheeger’s Inequality

A2 < 0(G) < 26(G).

Proof sketch

o We can write:

Z{u,v}EE(XU - XV)2

G) = i
o(C) xe{0.1)" 0.1} D3 ey (% — %0 )

o Also, we have

. Z{U,V}EE(XU - XV)2
x€R"—{0},x11 d- Zv X%
Z{U,V}EE(XU - XV)2
xE€RM—{0} x 11 % Dy (% — X, )2
? . Z{u,V}EE(xU —xy)?
o) T3, 00 =%

A =
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Spectral Graph Theory
Cheeger’s Inequality

A2 < 0(G) < 2¢(G).

Proof sketch

o We can write:

Z{u V}EE(XU - XV)

a(G) = " 7 —
xE{Ol} {0,1} E{uv}(xu Xy)

o Also, we have
q Z{u,v}GE(XU - XV)2
min _
xER—{0},x |1 d-y, x2
. Z{u v}EE(XU - XV)
x€ERMN— {0},>u_1 = Z{u v}(xu —x,)?
q Z{u v}EE(XU - V)2
xeRA- {o 14 Dy (Xu —x0)?

Ay =

e So, X < 0(G). O

4
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Spectral Graph Theory
Cheeger's Inequality

Theorem (Cheeger's Inequality)

2 <¢(G) < V2N

o First we will prove the following direction.

A2 < 0(G) < 26(G).

@ Now, we will prove the other direction.

&(G) < V2 %

@ We prove the above statement using a constructive argument.
That is, we will give an algorithm that outputs a cut S in the
given graph G such that ¢(S) < /2 As.
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Spectral Graph Theory
Cheeger’s Inequality
?(G) <V2- o I

Spectral Partitioning Algorithm

SpectralPartitioning(G, x)
- Sort the vertices of G in non-increasing order of
value of the vector x. That is, x,;, < x,, < ... <Xy,.
- Let i € {1,...,n — 1} that minimises
max {¢({V1’ ocog Vi})’ ¢({Vi+1,...,vn})}
- Output S = {wy,...,v;}

@ What is the running time of the above algorithm?
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Spectral Graph Theory
Cheeger’s Inequality
?(G) <V2- o I

Spectral Partitioning Algorithm

SpectralPartitioning(G, x)
- Sort the vertices of G in non-increasing order of
value of the vector x. That is, x,;, < x,, < ... <Xy,.
- Let i € {1,...,n — 1} that minimises
max {¢({V1’ ocog Vi})’ ¢({Vi+1,...,vn})}
- Output S = {wy,...,v;}

@ What is the running time of the above algorithm?
O(|V[log |V + |EJ)
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Spectral Graph Theory
Cheeger’s Inequality

9(G) < V2 a.
Spectral Partitioning Algorithm

SpectralPartitioning(G,x)
- Sort the vertices of G in non-increasing order of
value of the vector x. That is, x,;, < Xy, < ... <Xxy,.
- Let i € {1,...,n — 1} that minimises
max {¢({v1, ..., vi}), o({Vit1,..v })}
- Output S = {Vl7 ey V,'}

Let G = (V,E) be a d-regular graph, x € RIY| be a vector such that
x11. Let

R def . E{u,v}eE(XU - XV)2
e B O

and let S be the output of SpectralPartitioning(G,x). Then

#(S) < /2 R().

4
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Spectral Graph Theory

Cheeger’s Inequality

Spectral Partitioning Algorithm

SpectralPartitioning(G,x)
- Sort the vertices of G in non-increasing order of
value of the vector x. That is, x,; <x,, < ... <xy,.
- Let i € {1,...,n— 1} that minimises
max {d’({vl’ acag Vi})7 ¢({Vi+1,...,v,.})}
- Output S = {v1, ..., vj}

J
Lemma

Let G = (V, E) be a d-regular graph, x € RIY| be a vector such that
x11. Let

R(x) def. Z{u,v}EE(xU —x,)?

d- Zv X%/
and let S be the output of SpectralPartitioning(G,x). Then
6(S) < V2 R().

o Claim: Let x be an eigenvector of 2. Then R(x) = Xa.
o This implies that ¢(S) < /2 Aa.
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Spectral Graph Theory

Cheeger’s Inequality

Spectral Partitioning Algorithm

SpectralPartitioning(G,x)
- Sort the vertices of G in non-increasing order of
value of the vector x. That is, x,;, <Xy, < ... < xy,.
- Let i € {1,..., n— 1} that minimises
DX {¢({V1, ooy VI'})7 ¢({Vi+1,m,vn})}
- Output S = {Vl,... 7

|
\,

Lemma

Let G = (V, E) be a d-regular graph, x € RIVI be a vector such that
x11. Let 5

def. Z{U,V}EE(XU —xy)

- d-30,%

and let S be the output of SpectralPartitioning(G,x). Then

#(S) < /2 R(x).

o Claim: Let x be an eigenvector of 2. Then R(x) = X,.

o This implies that ¢(S) < /2 Xa.

o Note that the partitioning algorithm can be thought of as an
approximation algorithm for finding the cut with smallest edge
expansion.

R(x)

A\
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Spectral Graph Theory
Cheeger’s Inequality

Spectral Partitioning Algorithm

SpectralPartitioning(G,x)
- Sort the vertices of G in non-increasing order of
value of the vector x. That is, x,;, < x,, < ... <xy,.
- Let i € {1,...,n — 1} that minimises
max {6({11, s 1)) ({1,001}
- Output S = {v1, ..., v}

Let G = (V,E) be a d-regular graph, x € RIV| be a vector such that
x11. Let

def . E{u,v}GE(XU - XV)2
B = a5 %
v v

and let S be the output of SpectralPartitioning(G,x). Then
6(S) < 2+ R().

o We would prove that there exists an i € {1,...,n — 1} s.t.
o({1,...,1}) < V2R(x) and ¢({i +1,...,n — 1}) < \/2R(x).
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Spectral Graph Theory

Cheeger’s Inequality

Spectral Partitioning Algorithm

SpectralPartitioning(G,x)
- Sort the vertices of G in non-increasing order of
value of the vector x. That is, x,;, < Xy, < ... <Xxy,.
- Let i € {1,...,n— 1} that minimises
max {$({V1, o ¥1}), ({11, })}
- Output S ={v1, ..., ;

|
A

Lemma

Let G = (V,E) be a d-regular graph, x € RIV| be a vector such that
x11. Let )
R(x) def . Z{U,V}EE(XU —xv)
d-3,%%
and let S be the output of SpectralPartitioning(G,x). Then
#(S) £ /2 R(x).

o We would prove that there exists an i € {1,...,n — 1} s.t.
o({1,...,i1}) < /2R(x) and ¢({i +1,...,n —1}) < 1/2R(x).

o We will show that there is a distribution D over sets S of the
form {1, ..., i} such that:

Es[|E(S, V — S)I]

Esld - min (15T, 1V - 5] = V2R()

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Spectral Graph Theory

Cheeger’s Inequality

Lemma

Let G = (V, E) be a d-regular graph, x € RIV| be a vector such that
xL1. Let )
R def. Z{U,V}EE(XU - XV)
(x) =
d- Zv X%

and let S be the output of SpectralPartitioning(G,x). Then

$(5) < /2 R(x).

@ We would prove that there exists an i € {1,...,n — 1} s.t.
d({1,...,i1}) < V2R(x) and ¢({i +1,...,n —1}) < \/2R(x).

o We will show that there is a distribution D over sets S of the
form {1, ..., i} such that:

ES[[E(S, V — 5)]
Es{d - min (S|, [V~ 5] = V2™
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Spectral Graph Theory
Cheeger’s Inequality

Lemma

Let G = (V,E) be a d-regular graph, x € RIV| be a vector such that
x11. Let 2
def. Z{U,V}EE(XU - XV)
R(x) =
d-3, %
and let S be the output of SpectralPartitioning(G,x). Then

9(S) < V2 R).

o We will show that there is a distribution D over sets S of the
form {1,...,i} such that:

ES[IE(S.V — S)]
Esld - min {|5], ]V - 5] = V2F™)

o Claim 1: For the remaining proof, it will be safe to assume the
following:
o X£n/21 =0
Q xX+x2=1
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Spectral Graph Theory
Cheeger’s Inequality

@ We will show that there is a dlstrlbutlon D over sets S of the
form {1,...,i} such that ¢ [:Efnll’i S|S\|/“f s < < /2R(x).

o Claim 1: For the remaining proot{ |t will be safe to assume the
following: (1) X[,/21 =0 and (2) x§ +x3 = 1.

@ The distribution D over sets S of the form {1, .../} de defined by
the following randomized process:

Random process

- Pick a real value t in the range [x1,X,] with probability density
function f(t) = 2|t|.
-5« {i 1 x; < t}
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Spectral Graph Theory
Cheeger’s Inequality

@ We will show that there is a dlstrlbutlon D over sets S of the
form {1,...,i} such that ¢ [:Efnll’i S|S\|/“f s < < /2R(x).

o Claim 1: For the remaining proot{ |t will be safe to assume the
following: (1) X[,/21 =0 and (2) x§ +x3 = 1.

o The distribution D over sets S of the form {1, .../} de defined by
the following randomized process:

Random process

- Pick a real value t in the range [x1,X,] with probability density
function f(t) = 2|t|.
-5« {i 1 x; < t}

o Claim 2: Es[min{|S|,|V — S[}] =, x?.
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Spectral Graph Theory
Cheeger’s Inequality

@ We will show that there is a dlstrlbutlon D over sets S of the
form {1,...,i} such that ¢ [:Efnll’i S|S\|/“f s < < /2R(x).

o Claim 1: For the remaining proot{ |t will be safe to assume the
following: (1) X[,/21 =0 and (2) x§ +x3 = 1.

@ The distribution D over sets S of the form {1, .../} de defined by
the following randomized process:

Random process

- Pick a real value t in the range [x1,X,] with probability density
function f(t) = 2|t|.
-5« {i 1 x < t}

o Claim 2: Es[min{|S|,|V = S[}] =Y, x?.
o Claim 3: Pr[(i,j) is cut by (S, V — S)] < |x; — x| - (|xi]| + |x;])-
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Spectral Graph Theory

Cheeger’s Inequality

o We will show that there is a distribution D over sets S of the
form {1,...,i} such that Es[isﬂﬁ(js“/ws)l 77 < V2R(x).

o Claim 1: For the remaining proo |t will be safe to assume the
following: (1) X[,/2) =0 and (2) x3 +x2 = 1.

o The distribution D over sets S of the form {1, .../} de defined by
the following randomized process:

Random process

- Pick a real value t in the range [x1, X,] with probability density
function f(t) = 2|t|.
-5« {i 1 x < l’}

o Claim 2: Es[min{|S|,|V = S|}] = 3, x2.
o Claim 3: Pr[(i,j) is cut by (5, V — S)] < |x; — x| - (|xi| + [xj]).
o Claim 4: The following holds:

ST oxi=x)2- [>T (xil + [xi)?

{u,v}eE {u,v}eE

[ Y (xi—x)?-(2d Y x7)
{uv}ecE i
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Spectral Graph Theory

Cheeger’s Inequality

@ The results that we discussed were for d-regular graphs.

o Question: Can we get similar results for irregular graphs?

o Given an undirected graph G = (V, E), let d, denote the degree
of the vertex v.

o We can define the Rayleigh quotient of a vector x € RIV/ as:

_ Z{uyv}GE(xU - XV)2

a D, dvxg

o Let D be the diagonal matrix where D, , = 0 if u # v and
D,,=d,.

o The Laplacian of G can be defined as Lg = — D 2AD":.

o Given this, we have

. XTLGX
Ak = min max —=
k—dim S | xeS X'X

Re(x)

o Settingy = D’%x, we have:

TAHL 1

DzLsD

M= min max Y226y
k—dim ' | xes’  yT Dy
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Spectral Graph Theory

Cheeger’s Inequality

The results that we discussed were for d-regular graphs.
Question: Can we get similar results for irregular graphs?

Given an undirected graph G = (V/, E), let d, denote the degree
of the vertex v.

We can define the Rayleigh quotient of a vector x € R!V! as:

o Z{U,V}EE(XU - XV)2

B >, dxd ’

Let D be the diagonal matrix where D, , = 0 if u # v and
D, =d,.

The Laplacian of G can be defined as Lg = | — D 3AD"z.
Given this, we have

. xTLgx
Ak = min max ——
k—dim S | xéS X'X

Ra(x)

(]

Setting y = D’%x, we have:

TD2LgD?
Ak = min maxw
k—dim §' | xes’  yT Dy

[

Note that yT D3 LcDty = yT(D — A)y = Sy (Yo = W0)2
SO, )\k = mink,d,-m S {maxyES RG(y)}.
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Spectral Graph Theory
Cheeger’s Inequality

@ The results that we discussed were for d-regular graphs.

@ Question: Can we get similar results for irregular graphs?

o Given an undirected graph G = (V/, E), let d, denote the degree
of the vertex v.

o The point of showing some of the quantities for irregular graphs
was to convince you that the arguments that worked for the
Cheeger's inequality for d-regular graphs also work for the irregular
graphs and we have:

22 < ¢(G) < V2.
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Spectral Graph Theory
Cheeger’s Inequality

@ The results that we discussed were for d-regular graphs.

@ Question: Can we get similar results for irregular graphs?

o Given an undirected graph G = (V/, E), let d, denote the degree
of the vertex v.

o The point of showing some of the quantities for irregular graphs
was to convince you that the arguments that worked for the
Cheeger's inequality for d-regular graphs also work for the irregular
graphs and we have:

% < (G) < /2X,.

@ Question: Are there higher order versions of the Cheeger's
inequality?
o What this could mean is that the graph can be partitioned into at
least k clusters iff \x is small.
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Spectral Graph Theory
Cheeger’s Inequality

@ The results that we discussed were for d-regular graphs.

@ Question: Can we get similar results for irregular graphs?

@ Given an undirected graph G = (V, E), let d, denote the degree
of the vertex v. Yes

@ Question: Are there higher order versions of the Cheeger's
inequality? Yes

@ The proof of Cheeger's inequality gave us an algorithm to output
a good cut in the given graph given a second eigenvector of the
Laplacian.

@ Question: How do we compute a second eigenvector? Can we
estimate the second eigenvector? How well does an approximate
version of the second eigenvector work with respect to giving a
good cut?
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Spectral Graph Theory
Cheeger’s Inequality

@ The proof of Cheeger's inequality gave us an algorithm to output
a good cut in the given graph given a second eigenvector of the
Laplacian.

@ Question: How do we compute a second eigenvector? Can we
estimate the second eigenvector? How well does an approximate
version of the second eigenvector work with respect to giving a
good cut?

o Theorem: Let x be a vector such that x” Lx < (X 4+ £)x"x, then
the spectral partitioning algorithm finds a cut (S, V — S) such that
6(S) < /46(G) + 2.

e Such an approximate eigenvector can be obtained using the power
method.
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End
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