COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Spectral Graph Theory:

Eigenvalues and graph properties

Spectral Graph Theory

- We shall work with d-regular undirected graphs.
- It will be convenient to work with the matrix $L=I-\frac{1}{d} A$ instead of the adjacency matrix A.
- The matrix L defined above is called the Normalized Laplacian Matrix of the graph.
- We prove the following basic results of spectral graph theory.

Theorem

Let G be a d-regular undirected graph, and $L=I-\frac{1}{d} A$ be its normalized Laplacian matrix. Let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the real eigenvalues of L with multiplicities. Then
(1) $\lambda_{1}=0$ and $\lambda_{n} \leq 2$.
(2) $\lambda_{k}=0$ if and only if G has at least k connected components.
(3) $\lambda_{n}=2$ if and only if at least one of the connected components of G is bipartite.

Spectral Graph Theory

Cheeger's Inequality

- Given a d-regular undirected graph with normalised graph laplacian $L=I-\frac{1}{d} A$ having eigenvalues $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} \leq 2$.
- We know that the second eigenvalue $\lambda_{2}=0$ if and only if G has at least two connected components.
- In other words, the second eigenvalue $\lambda_{2}=0$ if and only if $\phi(G)=0$.
- We will prove an approximate version of this result that says that λ_{2} is small if and only if $\phi(G)$ is small.

Theorem (Cheeger's Inequality)

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \cdot \lambda_{2}}
$$

Spectral Graph Theory

Cheeger's Inequality
Theorem (Cheeger's Inequality)

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \cdot \lambda_{2}}
$$

- First we will prove the following direction.

Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Spectral Graph Theory

Cheeger's Inequality
Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\begin{aligned}
\sigma(G) & =\min _{\mathbf{x} \in\{0,1\}^{n}-\{0,1\}} \frac{\sum_{\{u, v\} \in E}\left|\mathbf{x}_{u}-\mathbf{x}_{v}\right|}{\frac{d}{n} \sum_{\{u, v\}}\left|\mathbf{x}_{u}-\mathbf{x}_{v}\right|} \\
& =\min _{\mathbf{x} \in\{0,1\}^{n}-\{0,1\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
\end{aligned}
$$

Spectral Graph Theory

Cheeger's Inequality
Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\sigma(G)=\min _{x \in\{0,1\}^{n}-\{\mathbf{0 , 1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
$$

- Also, we have

$$
\lambda_{2}=\min _{x \in \mathbb{R}^{n}-\{0\}, x \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{V}^{2}}
$$

Spectral Graph Theory

Cheeger's Inequality

Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\sigma(G)=\min _{x \in\{0,1\}^{n}-\{\mathbf{0}, \mathbf{1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
$$

- Also, we have

$$
\begin{aligned}
\lambda_{2} & =\min _{x \in \mathbb{R}^{n}-\{0\}, \mathbf{x \perp 1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}} \\
& \stackrel{?}{=} \min _{x \in \mathbb{R}^{n}-\{0\}, x \perp 1} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
\end{aligned}
$$

Spectral Graph Theory

Cheeger's Inequality

Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\sigma(G)=\min _{x \in\{0,1\}^{n}-\{\mathbf{0}, \mathbf{1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
$$

- Also, we have

$$
\begin{aligned}
\lambda_{2} & =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}\}, \mathbf{x} \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}} \\
& =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}\}, \mathbf{x} \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}} \\
& \stackrel{?}{=} \min _{x \in \mathbb{R}^{n}-\{0,1\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
\end{aligned}
$$

Spectral Graph Theory

Cheeger's Inequality

Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\sigma(G)=\min _{x \in\{0,1\}^{n}-\{\mathbf{0}, \mathbf{1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
$$

- Also, we have

$$
\begin{aligned}
\lambda_{2} & =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}\}, \mathbf{x} \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}} \\
& =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}\}, \mathbf{x} \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}} \\
& =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}, \mathbf{1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
\end{aligned}
$$

- So, $\lambda_{2} \leq \sigma(G)$.

Spectral Graph Theory

Cheeger's Inequality

Theorem (Cheeger's Inequality)
 $$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \cdot \lambda_{2}} .
$$

- First we will prove the following direction.

Lemma

$\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)$.

- Now, we will prove the other direction.

Lemma

$\phi(G) \leq \sqrt{2 \cdot \lambda_{2}}$.

- We prove the above statement using a constructive argument. That is, we will give an algorithm that outputs a cut S in the given graph G such that $\phi(S) \leq \sqrt{2 \cdot \lambda_{2}}$.

Spectral Graph Theory

Cheeger's Inequality

Lemma

$$
\phi(G) \leq \sqrt{2 \cdot \lambda_{2}}
$$

Spectral Partitioning Algorithm

SpectralPartitioning (G, \mathbf{x})

- Sort the vertices of G in non-increasing order of value of the vector \mathbf{x}. That is, $\mathbf{x}_{v_{1}} \leq \mathbf{x}_{v_{2}} \leq \ldots \leq \mathbf{x}_{v_{n}}$.
- Let $i \in\{1, \ldots, n-1\}$ that minimises $\max \left\{\phi\left(\left\{v_{1}, \ldots, v_{i}\right\}\right), \phi\left(\left\{v_{i+1, \ldots, v_{n}}\right\}\right)\right\}$
- Output $S=\left\{v_{1}, \ldots, v_{i}\right\}$
- What is the running time of the above algorithm?

Spectral Graph Theory

Cheeger's Inequality

Lemma

$$
\phi(G) \leq \sqrt{2 \cdot \lambda_{2}} .
$$

Spectral Partitioning Algorithm

SpectralPartitioning (G, \mathbf{x})

- Sort the vertices of G in non-increasing order of value of the vector \mathbf{x}. That is, $\mathbf{x}_{v_{1}} \leq \mathbf{x}_{v_{2}} \leq \ldots \leq \mathbf{x}_{v_{n}}$.
- Let $i \in\{1, \ldots, n-1\}$ that minimises $\max \left\{\phi\left(\left\{v_{1}, \ldots, v_{i}\right\}\right), \phi\left(\left\{v_{i+1, \ldots, v_{n}}\right\}\right)\right\}$
- Output $S=\left\{v_{1}, \ldots, v_{i}\right\}$
- What is the running time of the above algorithm? $O(|V| \log |V|+|E|)$

Spectral Graph Theory

Cheeger's Inequality

Lemma

$\phi(G) \leq \sqrt{2 \cdot \lambda_{2}}$.

Spectral Partitioning Algorithm

SpectralPartitioning (G, \mathbf{x})

- Sort the vertices of G in non-increasing order of value of the vector \mathbf{x}. That is, $\mathbf{x}_{v_{1}} \leq \mathbf{x}_{v_{2}} \leq \ldots \leq \mathbf{x}_{v_{n}}$.
- Let $i \in\{1, \ldots, n-1\}$ that minimises $\max \left\{\phi\left(\left\{v_{1}, \ldots, v_{i}\right\}\right), \phi\left(\left\{v_{i+1}, \ldots, v_{n}\right\}\right)\right\}$
- Output $S=\left\{v_{1}, \ldots, v_{i}\right\}$

Lemma

Let $G=(V, E)$ be a d-regular graph, $\mathbf{x} \in \mathbb{R}^{|V|}$ be a vector such that $\mathbf{x} \perp 1$. Let

$$
R(\mathbf{x}) \stackrel{\text { def. }}{=} \cdot \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}}
$$

and let S be the output of SpectralPartitioning (G, \mathbf{x}). Then $\phi(S) \leq \sqrt{2 \cdot R(\mathbf{x})}$.

Spectral Graph Theory

Cheeger's Inequality

Lemma

$$
\phi(G) \leq \sqrt{2 \cdot \lambda_{2}} .
$$

Spectral Partitioning Algorithm

SpectralPartitioning (G, \mathbf{x})

- Sort the vertices of G in non-increasing order of value of the vector \mathbf{x}. That is, $\mathbf{x}_{v_{1}} \leq \mathbf{x}_{v_{2}} \leq \ldots \leq \mathbf{x}_{v_{n}}$.
- Let $i \in\{1, \ldots, n-1\}$ that minimises $\max \left\{\phi\left(\left\{v_{1}, \ldots, v_{i}\right\}\right), \phi\left(\left\{v_{i+1, \ldots, v_{n}}\right\}\right)\right\}$
- Output $S=\left\{v_{1}, \ldots, v_{i}\right\}$

Lemma

Let $G=(V, E)$ be a d-regular graph, $\mathbf{x} \in \mathbb{R}^{|V|}$ be a vector such that $\mathbf{x} \perp \mathbf{1}$. Let

$$
R(\mathbf{x}) \stackrel{\text { def. }}{=} \cdot \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}}
$$

and let S be the output of SpectralPartitioning (G, \mathbf{x}). Then $\phi(S) \leq \sqrt{2 \cdot R(\mathbf{x})}$.

- Claim: Let \mathbf{x} be an eigenvector of λ_{2}. Then $R(\mathbf{x})=\lambda_{2}$.
- This implies that $\phi(S) \leq \sqrt{2 \cdot \lambda_{2}}$.

Spectral Graph Theory

Cheeger's Inequality

Spectral Partitioning Algorithm

SpectralPartitioning (G, \mathbf{x})

- Sort the vertices of G in non-increasing order of value of the vector \mathbf{x}. That is, $\mathbf{x}_{v_{1}} \leq \mathbf{x}_{v_{2}} \leq \ldots \leq \mathbf{x}_{v_{n}}$.
- Let $i \in\{1, \ldots, n-1\}$ that minimises $\max \left\{\phi\left(\left\{v_{1}, \ldots, v_{i}\right\}\right), \phi\left(\left\{v_{i+1}, \ldots, v_{n}\right\}\right)\right\}$
- Output $S=\left\{v_{1}, \ldots, v_{i}\right\}$

Lemma

Let $G=(V, E)$ be a d-regular graph, $\mathbf{x} \in \mathbb{R}^{|V|}$ be a vector such that $\mathbf{x} \perp \mathbf{1}$. Let

$$
R(\mathbf{x}) \stackrel{\text { def. }}{=} \cdot \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{V}^{2}}
$$

and let S be the output of SpectralPartitioning (G, \mathbf{x}). Then $\phi(S) \leq \sqrt{2 \cdot R(\mathbf{x})}$.

- Claim: Let \mathbf{x} be an eigenvector of λ_{2}. Then $R(\mathbf{x})=\lambda_{2}$.
- This implies that $\phi(S) \leq \sqrt{2 \cdot \lambda_{2}}$.
- Note that the partitioning algorithm can be thought of as an approximation algorithm for finding the cut with smallest edge expansion.

Spectral Graph Theory

Cheeger's Inequality

Spectral Partitioning Algorithm

SpectralPartitioning (G, \mathbf{x})

- Sort the vertices of G in non-increasing order of value of the vector \mathbf{x}. That is, $\mathbf{x}_{v_{1}} \leq \mathbf{x}_{v_{2}} \leq \ldots \leq \mathbf{x}_{v_{n}}$.
- Let $i \in\{1, \ldots, n-1\}$ that minimises $\max \left\{\phi\left(\left\{v_{1}, \ldots, v_{i}\right\}\right), \phi\left(\left\{v_{i+1, \ldots, v_{n}}\right\}\right)\right\}$
- Output $S=\left\{v_{1}, \ldots, v_{i}\right\}$

Lemma

Let $G=(V, E)$ be a d-regular graph, $\mathbf{x} \in \mathbb{R}^{|V|}$ be a vector such that $\mathbf{x} \perp 1$. Let

$$
R(\mathbf{x}) \stackrel{\text { def. }}{=} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}}
$$

and let S be the output of SpectralPartitioning (G, \mathbf{x}). Then $\phi(S) \leq \sqrt{2 \cdot R(\mathbf{x})}$.

- We would prove that there exists an $i \in\{1, \ldots, n-1\}$ s.t.

$$
\phi(\{1, \ldots, i\}) \leq \sqrt{2 R(\mathbf{x})} \text { and } \phi(\{i+1, \ldots, n-1\}) \leq \sqrt{2 R(\mathbf{x})}
$$

Spectral Graph Theory

Cheeger's Inequality

Spectral Partitioning Algorithm

SpectralPartitioning (G, \mathbf{x})

- Sort the vertices of G in non-increasing order of value of the vector \mathbf{x}. That is, $\mathbf{x}_{v_{1}} \leq \mathbf{x}_{v_{2}} \leq \ldots \leq \mathbf{x}_{v_{n}}$.
- Let $i \in\{1, \ldots, n-1\}$ that minimises $\max \left\{\phi\left(\left\{v_{1}, \ldots, v_{i}\right\}\right), \phi\left(\left\{v_{i+1}, \ldots, v_{n}\right\}\right)\right\}$
- Output $S=\left\{v_{1}, \ldots, v_{i}\right\}$

Lemma

Let $G=(V, E)$ be a d-regular graph, $\mathbf{x} \in \mathbb{R}^{|V|}$ be a vector such that $\mathbf{x} \perp 1$. Let

$$
R(\mathbf{x}) \stackrel{\text { def. }}{=} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}}
$$

and let S be the output of SpectralPartitioning (G, \mathbf{x}). Then $\phi(S) \leq \sqrt{2 \cdot R(x)}$.

- We would prove that there exists an $i \in\{1, \ldots, n-1\}$ s.t. $\phi(\{1, \ldots, i\}) \leq \sqrt{2 R(x)}$ and $\phi(\{i+1, \ldots, n-1\}) \leq \sqrt{2 R(\mathbf{x})}$.
- We will show that there is a distribution D over sets S of the form $\{1, \ldots, i\}$ such that:

$$
\frac{\mathbf{E}_{S}[|E(S, V-S)|]}{\mathbf{E}_{S}[d \cdot \min \{|S|,|V-S|\}]} \leq \sqrt{2 R(\mathbf{x})}
$$

Spectral Graph Theory

Cheeger's Inequality

Lemma

Let $G=(V, E)$ be a d-regular graph, $\mathbf{x} \in \mathbb{R}^{|V|}$ be a vector such that $\mathbf{x} \perp 1$. Let

$$
R(\mathbf{x}) \stackrel{\text { def. }}{=} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}}
$$

and let S be the output of SpectralPartitioning (G, \mathbf{x}). Then $\phi(S) \leq \sqrt{2 \cdot R(\mathbf{x})}$.

- We would prove that there exists an $i \in\{1, \ldots, n-1\}$ s.t. $\phi(\{1, \ldots, i\}) \leq \sqrt{2 R(\mathbf{x})}$ and $\phi(\{i+1, \ldots, n-1\}) \leq \sqrt{2 R(\mathbf{x})}$.
- We will show that there is a distribution D over sets S of the form $\{1, \ldots, i\}$ such that:

$$
\frac{\mathbf{E}_{S}[|E(S, V-S)|]}{\mathbf{E}_{S}[d \cdot \min \{|S|,|V-S|\}]} \leq \sqrt{2 R(\mathbf{x})}
$$

Spectral Graph Theory

Cheeger's Inequality

Lemma

Let $G=(V, E)$ be a d-regular graph, $\mathbf{x} \in \mathbb{R}^{|V|}$ be a vector such that $\mathbf{x} \perp 1$. Let

$$
R(\mathbf{x}) \stackrel{\text { def. }}{=} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}}
$$

and let S be the output of SpectralPartitioning (G, \mathbf{x}). Then $\phi(S) \leq \sqrt{2 \cdot R(\mathbf{x})}$.

- We will show that there is a distribution D over sets S of the form $\{1, \ldots, i\}$ such that:

$$
\frac{\mathbf{E}_{S}[|E(S, V-S)|]}{\mathbf{E}_{S}[d \cdot \min \{|S|,|V-S|\}]} \leq \sqrt{2 R(\mathbf{x})}
$$

- Claim 1: For the remaining proof, it will be safe to assume the following:
(1) $\mathbf{x}_{[n / 2\rceil}=0$
(2) $x_{1}^{2}+x_{n}^{2}=1$

Spectral Graph Theory

Cheeger's Inequality

- We will show that there is a distribution D over sets S of the form $\{1, \ldots, i\}$ such that $\frac{\left.\mathrm{E}_{S}[\mid E(S, V-S)]\right]}{\mathrm{E}_{5}[d \cdot \min \{|S|,|V-S|\}]} \leq \sqrt{2 R(\mathbf{x})}$.
- Claim 1: For the remaining proof, it will be safe to assume the following: (1) $\mathbf{x}_{\lceil n / 2\rceil}=0$ and (2) $\mathbf{x}_{1}^{2}+\mathbf{x}_{n}^{2}=1$.
- The distribution D over sets S of the form $\{1, \ldots i\}$ de defined by the following randomized process:

Random process

- Pick a real value t in the range $\left[\mathbf{x}_{1}, \mathbf{x}_{n}\right]$ with probability density function $f(t)=2|t|$.
$-S \leftarrow\left\{i: \mathbf{x}_{i} \leq t\right\}$

Spectral Graph Theory

Cheeger's Inequality

- We will show that there is a distribution D over sets S of the form $\{1, \ldots, i\}$ such that $\frac{\left.\mathrm{E}_{S}[\mid E(S, V-S)]\right]}{\mathrm{E}_{5}[d \cdot \min \{|S|,|V-S|\}]} \leq \sqrt{2 R(\mathbf{x})}$.
- Claim 1: For the remaining proof, it will be safe to assume the following: (1) $\mathbf{x}_{\lceil n / 2\rceil}=0$ and (2) $\mathbf{x}_{1}^{2}+\mathbf{x}_{n}^{2}=1$.
- The distribution D over sets S of the form $\{1, \ldots i\}$ de defined by the following randomized process:

Random process

- Pick a real value t in the range $\left[\mathbf{x}_{1}, \mathbf{x}_{n}\right]$ with probability density function $f(t)=2|t|$.
$-S \leftarrow\left\{i: \mathbf{x}_{i} \leq t\right\}$
- Claim 2: $\mathbf{E}_{S}[\min \{|S|,|V-S|\}]=\sum_{i} \mathbf{x}_{i}^{2}$.

Spectral Graph Theory

Cheeger's Inequality

- We will show that there is a distribution D over sets S of the form $\{1, \ldots, i\}$ such that $\frac{\left.\mathrm{E}_{S}[\mid E(S, V-S)]\right]}{\mathrm{E}_{5}[d \cdot \min \{|S|,|V-S|\}]} \leq \sqrt{2 R(\mathbf{x})}$.
- Claim 1: For the remaining proof, it will be safe to assume the following: (1) $\mathbf{x}_{\lceil n / 2\rceil}=0$ and (2) $\mathbf{x}_{1}^{2}+\mathbf{x}_{n}^{2}=1$.
- The distribution D over sets S of the form $\{1, \ldots i\}$ de defined by the following randomized process:

Random process

- Pick a real value t in the range $\left[\mathbf{x}_{1}, \mathbf{x}_{n}\right]$ with probability density function $f(t)=2|t|$.
$-S \leftarrow\left\{i: \mathbf{x}_{i} \leq t\right\}$
- Claim 2: $\mathbf{E}_{S}[\min \{|S|,|V-S|\}]=\sum_{i} \mathbf{x}_{i}^{2}$.
- Claim 3: $\operatorname{Pr}[(i, j)$ is cut by $(S, V-S)] \leq\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right| \cdot\left(\left|\mathbf{x}_{i}\right|+\left|\mathbf{x}_{j}\right|\right)$.

Spectral Graph Theory

Cheeger's Inequality

- We will show that there is a distribution D over sets S of the form $\{1, \ldots, i\}$ such that $\frac{\mathrm{E}_{S}[\mid E(S, V-S)]}{\mathrm{E}_{s}[d \cdot \mathrm{~min}\{|S|, \mid V-S S\}]} \leq \sqrt{2 R(\mathbf{x})}$.
- Claim 1: For the remaining proof, it will be safe to assume the following: (1) $\mathbf{x}_{\lceil n / 2\rceil}=0$ and (2) $\mathbf{x}_{1}^{2}+\mathbf{x}_{n}^{2}=1$.
- The distribution D over sets S of the form $\{1, \ldots i\}$ de defined by the following randomized process:

Random process

- Pick a real value t in the range $\left[\mathbf{x}_{1}, \mathbf{x}_{n}\right]$ with probability density function $f(t)=2|t|$.
$-S \leftarrow\left\{i: \mathbf{x}_{i} \leq t\right\}$
- Claim 2: $\mathbf{E}_{S}[\min \{|S|,|V-S|\}]=\sum_{i} \mathbf{x}_{i}^{2}$.
- Claim 3: $\operatorname{Pr}[(i, j)$ is cut by $(S, V-S)] \leq\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right| \cdot\left(\left|\mathbf{x}_{i}\right|+\left|\mathbf{x}_{j}\right|\right)$.
- Claim 4: The following holds:

$$
\begin{aligned}
\mathbf{E}_{S}[|E(S, V-S)|] & \leq \sqrt{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{2}} \cdot \sqrt{\sum_{\{u, v\} \in E}\left(\left|\mathbf{x}_{i}\right|+\left|\mathbf{x}_{j}\right|\right)^{2}} \\
& \leq \sqrt{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{2}} \cdot\left(2 d \sum_{i} \mathbf{x}_{i}^{2}\right)
\end{aligned}
$$

Spectral Graph Theory

Cheeger's Inequality

- The results that we discussed were for d-regular graphs.
- Question: Can we get similar results for irregular graphs?
- Given an undirected graph $G=(V, E)$, let d_{v} denote the degree of the vertex v.
- We can define the Rayleigh quotient of a vector $\mathbf{x} \in \mathbb{R}^{|V|}$ as:

$$
R_{G}(\mathbf{x})=\frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\sum_{v} d_{v} \mathbf{x}_{v}^{2}}
$$

- Let D be the diagonal matrix where $D_{u, v}=0$ if $u \neq v$ and $D_{v, v}=d_{v}$.
- The Laplacian of G can be defined as $L_{G}=I-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$.
- Given this, we have

$$
\lambda_{k}=\min _{k-\operatorname{dim} S}\left\{\max _{\mathbf{x} \in S} \frac{\mathbf{x}^{T} L_{G} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}\right\}
$$

- Setting $\mathbf{y}=D^{-\frac{1}{2}} \mathbf{x}$, we have:

$$
\lambda_{k}=\min _{k-\operatorname{dim}}\left\{\max _{S^{\prime}} \frac{\mathbf{y}^{T} D^{\frac{1}{2}} L_{G} D^{\frac{1}{2}} \mathbf{y}}{\mathbf{y}^{T} D \mathbf{y}}\right\}
$$

Spectral Graph Theory

Cheeger's Inequality

- The results that we discussed were for d-regular graphs.
- Question: Can we get similar results for irregular graphs?
- Given an undirected graph $G=(V, E)$, let d_{v} denote the degree of the vertex v.
- We can define the Rayleigh quotient of a vector $\mathbf{x} \in \mathbb{R}^{|V|}$ as:

$$
R_{G}(\mathbf{x})=\frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\sum_{v} d_{v} \mathbf{x}_{v}^{2}}
$$

- Let D be the diagonal matrix where $D_{u, v}=0$ if $u \neq v$ and $D_{v, v}=d_{v}$.
- The Laplacian of G can be defined as $L_{G}=I-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$.
- Given this, we have

$$
\lambda_{k}=\min _{k-\operatorname{dim}}\left\{\max _{\mathbf{x} \in S} \frac{\mathbf{x}^{T} L_{G} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}\right\}
$$

- Setting $\mathbf{y}=D^{-\frac{1}{2}} \mathbf{x}$, we have:

$$
\lambda_{k}=\min _{k-\operatorname{dim}}\left\{\max _{S^{\prime} \in S^{\prime}} \frac{\mathbf{y}^{T} D^{\frac{1}{2}} L_{G} D^{\frac{1}{2}} \mathbf{y}}{\mathbf{y}^{T} D \mathbf{y}}\right\}
$$

- Note that $\mathbf{y}^{T} D^{\frac{1}{2}} L_{G} D^{\frac{1}{2}} \mathbf{y}=\mathbf{y}^{T}(D-A) \mathbf{y}=\sum_{\{u, v\}}\left(\mathbf{y}_{u}-\mathbf{y}_{v}\right)^{2}$.
- So, $\lambda_{k}=\min _{k-\operatorname{dim}} S\left\{\max _{\mathbf{y} \in S} R_{G}(\mathbf{y})\right\}$.

Spectral Graph Theory

Cheeger's Inequality

- The results that we discussed were for d-regular graphs.
- Question: Can we get similar results for irregular graphs?
- Given an undirected graph $G=(V, E)$, let d_{v} denote the degree of the vertex v.
- The point of showing some of the quantities for irregular graphs was to convince you that the arguments that worked for the Cheeger's inequality for d-regular graphs also work for the irregular graphs and we have:

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}}
$$

Spectral Graph Theory
 Cheeger's Inequality

- The results that we discussed were for d-regular graphs.
- Question: Can we get similar results for irregular graphs?
- Given an undirected graph $G=(V, E)$, let d_{v} denote the degree of the vertex v.
- The point of showing some of the quantities for irregular graphs was to convince you that the arguments that worked for the Cheeger's inequality for d-regular graphs also work for the irregular graphs and we have:

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}} .
$$

- Question: Are there higher order versions of the Cheeger's inequality?
- What this could mean is that the graph can be partitioned into at least k clusters iff λ_{k} is small.

Spectral Graph Theory

Cheeger's Inequality

- The results that we discussed were for d-regular graphs.
- Question: Can we get similar results for irregular graphs?
- Given an undirected graph $G=(V, E)$, let d_{v} denote the degree of the vertex v. Yes
- Question: Are there higher order versions of the Cheeger's inequality? Yes
- The proof of Cheeger's inequality gave us an algorithm to output a good cut in the given graph given a second eigenvector of the Laplacian.
- Question: How do we compute a second eigenvector? Can we estimate the second eigenvector? How well does an approximate version of the second eigenvector work with respect to giving a good cut?

Spectral Graph Theory

Cheeger's Inequality

- The proof of Cheeger's inequality gave us an algorithm to output a good cut in the given graph given a second eigenvector of the Laplacian.
- Question: How do we compute a second eigenvector? Can we estimate the second eigenvector? How well does an approximate version of the second eigenvector work with respect to giving a good cut?
- Theorem: Let \mathbf{x} be a vector such that $\mathbf{x}^{T} L \mathbf{x} \leq\left(\lambda_{2}+\varepsilon\right) \mathbf{x}^{T} \mathbf{x}$, then the spectral partitioning algorithm finds a cut $(S, V-S)$ such that $\phi(S) \leq \sqrt{4 \phi(G)+2 \varepsilon}$.
- Such an approximate eigenvector can be obtained using the power method.

End

