COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Spectral Graph Theory:

Eigenvalues and graph properties

Spectral Graph Theory

- We shall work with d-regular undirected graphs.
- It will be convenient to work with the matrix $L=I-\frac{1}{d} A$ instead of the adjacency matrix A.
- The matrix L defined above is called the Normalized Laplacian Matrix of the graph.
- We prove the following basic results of spectral graph theory.

Theorem

Let G be a d-regular undirected graph, and $L=I-\frac{1}{d} A$ be its normalized Laplacian matrix. Let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the real eigenvalues of L with multiplicities. Then
(1) $\lambda_{1}=0$ and $\lambda_{n} \leq 2$.
(2) $\lambda_{k}=0$ if and only if G has at least k connected components.
(3) $\lambda_{n}=2$ if and only if at least one of the connected components of G is bipartite.

Spectral Graph Theory

Cheeger's Inequality

- Given a d-regular undirected graph with normalised graph laplacian $L=I-\frac{1}{d} A$ having eigenvalues $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} \leq 2$.
- We know that the second eigenvalue $\lambda_{2}=0$ if and only if G has at least two connected components.
- In other words, the second eigenvalue $\lambda_{2}=0$ if and only if $\phi(G)=0$.
- We will prove an approximate version of this result that says that λ_{2} is small if and only if $\phi(G)$ is small.

Theorem (Cheeger's Inequality)

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \cdot \lambda_{2}}
$$

Spectral Graph Theory

Cheeger's Inequality
Theorem (Cheeger's Inequality)

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \cdot \lambda_{2}}
$$

- First we will prove the following direction.

Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Spectral Graph Theory

Cheeger's Inequality
Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\begin{aligned}
\sigma(G) & =\min _{\mathbf{x} \in\{0,1\}^{n}-\{0,1\}} \frac{\sum_{\{u, v\} \in E}\left|\mathbf{x}_{u}-\mathbf{x}_{v}\right|}{\frac{d}{n} \sum_{\{u, v\}}\left|\mathbf{x}_{u}-\mathbf{x}_{v}\right|} \\
& =\min _{\mathbf{x} \in\{0,1\}^{n}-\{0,1\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
\end{aligned}
$$

Spectral Graph Theory

Cheeger's Inequality
Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\sigma(G)=\min _{x \in\{0,1\}^{n}-\{\mathbf{0 , 1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
$$

- Also, we have

$$
\lambda_{2}=\min _{x \in \mathbb{R}^{n}-\{0\}, x \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{V}^{2}}
$$

Spectral Graph Theory

Cheeger's Inequality

Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\sigma(G)=\min _{x \in\{0,1\}^{n}-\{\mathbf{0}, \mathbf{1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
$$

- Also, we have

$$
\begin{aligned}
\lambda_{2} & =\min _{x \in \mathbb{R}^{n}-\{0\}, \mathbf{x \perp 1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}} \\
& \stackrel{?}{=} \min _{x \in \mathbb{R}^{n}-\{0\}, x \perp 1} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
\end{aligned}
$$

Spectral Graph Theory

Cheeger's Inequality

Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\sigma(G)=\min _{x \in\{0,1\}^{n}-\{\mathbf{0}, \mathbf{1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
$$

- Also, we have

$$
\begin{aligned}
\lambda_{2} & =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}\}, \mathbf{x} \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}} \\
& =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}\}, \mathbf{x} \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}} \\
& \stackrel{?}{=} \min _{x \in \mathbb{R}^{n}-\{0,1\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
\end{aligned}
$$

Spectral Graph Theory

Cheeger's Inequality

Lemma

$$
\lambda_{2} \leq \sigma(G) \leq 2 \phi(G)
$$

Proof sketch

- We can write:

$$
\sigma(G)=\min _{x \in\{0,1\}^{n}-\{\mathbf{0}, \mathbf{1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
$$

- Also, we have

$$
\begin{aligned}
\lambda_{2} & =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}\}, \mathbf{x} \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{d \cdot \sum_{v} \mathbf{x}_{v}^{2}} \\
& =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}\}, \mathbf{x} \perp \mathbf{1}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}} \\
& =\min _{x \in \mathbb{R}^{n}-\{\mathbf{0}, \mathbf{1}\}} \frac{\sum_{\{u, v\} \in E}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}{\frac{d}{n} \cdot \sum_{\{u, v\}}\left(\mathbf{x}_{u}-\mathbf{x}_{v}\right)^{2}}
\end{aligned}
$$

- So, $\lambda_{2} \leq \sigma(G)$.

End

