
COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Spectral Graph Theory:
Eigenvalues and graph properties
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Spectral Graph Theory

Graphs are used to model pairwise relationship between
objects. The objects are denoted by vertices and pairwise
relationships are denoted by edges.

Classical techniques have had a lot of success in solving
various problems on graphs such as shortest path, minimum
spanning tree etc.

More recently, algebraic techniques have been successful for
certain graph problems. Such techniques involve analysing the
adjacency matrix of the graph.

The relationship between the structural properties of a given
graph and the algebraic properties of the underlying
(appropriate variant of) adjacency matrix is key in such
analysis.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Spectral Graph Theory

Graphs are used to model pairwise relationship between
objects. The objects are denoted by vertices and pairwise
relationships are denoted by edges.

Classical techniques have had a lot of success in solving
various problems on graphs such as shortest path, minimum
spanning tree etc.

More recently, algebraic techniques have been successful for
certain graph problems. Such techniques involve analysing the
adjacency matrix of the graph.

The relationship between the structural properties of a given
graph and the algebraic properties of the underlying
(appropriate variant of) adjacency matrix is key in such
analysis.

Spectral Graph Theory studies how eigenvalues of the
adjacency matrix of a graph (an algebraic quantity) relates to
combinatorial properties of the graph.
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

We will study connectivity property of graphs.

Question: What is the “gold standard” for connectivity for
graphs?
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

We will study connectivity property of graphs. In many
applications, connectivity is of vital importance.

Question: What is the “gold standard” for connectivity for
graphs? Complete graph or a clique

Consider a communication network setting. Adding edges has
an associated cost. So, ideally we would like to have good
connectivity with small number of total edges.

What does it mean to have good connectivity?

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Spectral Graph Theory
Graph Expansion and Sparsest Cut

We will study connectivity property of graphs. In many
applications, connectivity is of vital importance.

Question: What is the “gold standard” for connectivity for
graphs? Complete graph or a clique

Consider a communication network setting. Adding edges has
an associated cost. So, ideally we would like to have good
connectivity with small number of total edges.

What does it mean to have good connectivity?

An intuitive notion is that removing a small fraction of edges
of the graph should not disconnect large portions of the graph.

Sparsity and edge expansion discussed next, are useful in
formalizing the notion of connectivity.
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Given a graph G = (V ,E ), a cut in the graph is a partition of
vertices into sets S and V − S . It is represented as a tuple
(S ,V − S).

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

In other words, the sparsity of the cut (S ,V − S) is the
fraction of edges across the cut divided by the fraction of
vertex pairs across the partition (i.e., the fraction of edges in
the ideal case of a complete graph).
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Given a graph G = (V ,E ), a cut in the graph is a partition of
vertices into sets S and V − S . It is represented as a tuple
(S ,V − S).

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

In other words, the sparsity of the cut (S ,V − S) is the fraction
of edges across the cut divided by the fraction of vertex pairs
across the partition (i.e., the fraction of edges in the ideal case of
a complete graph).
The sparsest cut problem is to find a non-trivial cut with minimal
sparsity.
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Given a graph G = (V ,E ), a cut in the graph is a partition of
vertices into sets S and V − S . It is represented as a tuple
(S ,V − S).

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

The sparsest cut problem is to find a non-trivial cut with minimal
sparsity.
The sparsity of a graph G = (V ,E ), denoted by σ(G ), is given by:

σ(G ) = min
S⊆V ,S 6=∅,S 6=V

σ(S).
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

The sparsity of a graph G = (V ,E ), denoted by σ(G ), is given by:

σ(G ) = min
S⊆V ,S 6=∅,S 6=V

σ(S).

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S |·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),
of a d-regular graph is given by:

φ(S) =
|E (S ,V − S)|

d · |S |
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

The sparsity of a graph G = (V ,E ), denoted by σ(G ), is given by:

σ(G ) = min
S⊆V ,S 6=∅,S 6=V

σ(S).

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S |·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),

of a d-regular graph is given by: φ(S) = |E(S,V−S)|
d ·|S| .

The edge expansion of a d-regular graph is given by
φ(G ) = minS :|S |≤|V |/2 φ(S).
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S|·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),

of a d-regular graph is given by: φ(S) = |E(S,V−S)|
d ·|S| .

The edge expansion of a d-regular graph is given by
φ(G ) = minS :|S |≤|V |/2 φ(S).
Claim 1: For every set S such that |S | ≤ |V |/2,
1
2σ(S) ≤ φ(S) ≤ σ(S).
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S|·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),

of a d-regular graph is given by: φ(S) = |E(S,V−S)|
d ·|S| .

The edge expansion of a d-regular graph is given by
φ(G ) = minS :|S |≤|V |/2 φ(S).
Claim 1: For every set S such that |S | ≤ |V |/2,
1
2σ(S) ≤ φ(S) ≤ σ(S).
Claim 2: 1

2σ(G ) ≤ φ(G ) ≤ σ(G ).
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S|·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),

of a d-regular graph is given by: φ(S) = |E(S,V−S)|
d ·|S| .

The edge expansion of a d-regular graph is given by
φ(G ) = minS :|S |≤|V |/2 φ(S).
Claim 1: For every set S such that |S | ≤ |V |/2,
1
2σ(S) ≤ φ(S) ≤ σ(S).
Claim 2: 1

2σ(G ) ≤ φ(G ) ≤ σ(G ).
Constant degree graphs with constant expansion are sparse
graphs with good connectivity property.

Theorem

Let G = (V ,E ) be a regular graph of expansion φ. Then, after an
ε < φ fraction of edges are adversarially removed, the graph has a
connected component that spans at least (1− ε

2φ) fraction of vertices.
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Theorem

Let G = (V ,E ) be a regular graph of expansion φ. Then, after an
ε < φ fraction of edges are adversarially removed, the graph has a
connected component that spans at least (1− ε

2φ) fraction of vertices.

In a d-regular expander (i.e., constant expansion), the removal of
k edges can cause O(k/d) vertices to be disconnected from the
remaining giant component.
It is always possible to disconnect k/d vertices after removing k
edges. So, the reliability of an expander is the best possible.
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Linear Algebra Recap: Eigenvalues
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Spectral Graph Theory
Eigenvalues and Eigenvectors

The conjugate of a complex number x = a + ib is denoted by x̄
and has value x̄ = a− ib.
For a complex matrix M ∈ Cm×n, the conjugate transpose of M,
denoted by M? ∈ Cn×m such that (M?)i ,j = M̄j ,i .
The inner product of two vectors x and y is defined as
〈x, y〉 = x?y.

Definition (Eigenvalue and eigenvector)

For a square matrix M ∈ Cn×n, λ ∈ C is a scalar, x ∈ Cn − {0} is a
non-zero vector and

Mx = λx

then we say that λ is an eigenvalue of M and x is an eigenvector of M
corresponding to eigenvalue λ.
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Spectral Graph Theory
Eigenvalues and Eigenvectors

Definition (Eigenvalue and eigenvector)

For a square matrix M ∈ Cn×n, λ ∈ C is a scalar, x ∈ Cn − {0} is a
non-zero vector and

Mx = λx

then we say that λ is an eigenvalue of M and x is an eigenvector of M
corresponding to eigenvalue λ.

The equation Mx = λx can alternatively be written as
(M − λI )x = 0.
This is equivalent to det(M − λI ) = 0.
The LHS of the equation is a polynomial of degree n in λ and so
has n solutions (counting multiplicities).
We will be studying the eigenvalues of adjacency matrices of
undirected graphs which are real and symmetric. Next, we look at
some properties of such matrices.
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Spectral Graph Theory
Eigenvalues and Eigenvectors

Definition (Eigenvalue and eigenvector)

For a square matrix M ∈ Cn×n, λ ∈ C is a scalar, x ∈ Cn − {0} is a
non-zero vector and

Mx = λx

then we say that λ is an eigenvalue of M and x is an eigenvector of M
corresponding to eigenvalue λ.

We will be studying the eigenvalues of adjacency matrices of
undirected graphs which are real and symmetric. Next, we look at
some properties of such matrices.
A square matrix M ∈ Cn×n is called Hermitian iff M = M?.

Lemma

If M is Hermitian, then all eigenvalues of M are real.
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Spectral Graph Theory
Eigenvalues and Eigenvectors

We will be studying the eigenvalues of adjacency matrices of
undirected graphs which are real and symmetric. Next, we look at
some properties of such matrices.
A square matrix M ∈ Cn×n is called Hermitian iff M = M?.

Lemma

If M is Hermitian, then all eigenvalues of M are real.

Lemma

If M is a Hermitian matrix and x and y are eigenvectors of different
eigenvalues, then x and y are orthogonal (i.e., 〈x, y〉 = 0).
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Spectral Graph Theory
Eigenvalues and Eigenvectors

We will be studying the eigenvalues of adjacency matrices of
undirected graphs which are real and symmetric. Next, we look at
some properties of such matrices.
A square matrix M ∈ Cn×n is called Hermitian iff M = M?.

Lemma

If M is Hermitian, then all eigenvalues of M are real.

Lemma

If M is a Hermitian matrix and x and y are eigenvectors of different
eigenvalues, then x and y are orthogonal (i.e., 〈x, y〉 = 0).

We need another characterisation of eigenvalues and eigenvectors
that help us relate these quantities with combinatorial properties
of graphs such as connectivity.
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Spectral Graph Theory
Eigenvalues and Eigenvectors

We need another characterisation of eigenvalues and eigenvectors
that help us relate these quantities with combinatorial properties
of graphs such as connectivity.

Theorem

Let M ∈ Rn×n be a real symmetric matrix and λ1 ≤ ... ≤ λn be its
real eigenvalues (counted with multiplicities) sorted in non-decreasing
order. Let x1, ..., xk , k < n, be orthonormal vectors such that
Mxi = λixi for i = 1, ..., k . Then

λk+1 = min
x∈Rn−{0}:x⊥x1...,xk

xTMx

xTx

and any minimizer is an eigenvector of λk+1.
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Spectral Graph Theory
Eigenvalues and Eigenvectors

Theorem

Let M ∈ Rn×n be a real symmetric matrix and λ1 ≤ ... ≤ λn be its
real eigenvalues (counted with multiplicities) sorted in non-decreasing
order. Let x1, ..., xk , k < n, be orthonormal vectors such that
Mxi = λixi for i = 1, ..., k . Then

λk+1 = min
x∈Rn−{0}:x⊥x1...,xk

xTMx

xTx

and any minimizer is an eigenvector of λk+1.

We need the following lemma.

Lemma

Let M ∈ Rn×n be a real symmetric matrix, and let x1, ..., xk , k < n be
orthogonal eigenvectors of M. Then there is an eigenvector xk+1 of M
that is orthogonal to x1, ..., xk .
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Spectral Graph Theory
Eigenvalues and Eigenvectors

Theorem

Let M ∈ Rn×n be a real symmetric matrix and λ1 ≤ ... ≤ λn be its
real eigenvalues (counted with multiplicities) sorted in non-decreasing
order. Let x1, ..., xk , k < n, be orthonormal vectors such that
Mxi = λixi for i = 1, ..., k . Then

λk+1 = min
x∈Rn−{0}:x⊥x1...,xk

xTMx

xTx

and any minimizer is an eigenvector of λk+1.

We need the following lemma.

Lemma

Let M ∈ Rn×n be a real symmetric matrix, and let x1, ..., xk , k < n be
orthogonal eigenvectors of M. Then there is an eigenvector xk+1 of M
that is orthogonal to x1, ..., xk .

The above lemma has the following interesting corollary.

Corollary (Spectral theorem)

Let M ∈ Rn×n be a real symmetric matrix, and λ1, ..., λn be its real
eigenvalues, with multiplicities; then there are orthonormal vectors
x1, ..., xn, xi ∈ Rn such that xi is an eigenvector of λi .
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Spectral Graph Theory
Eigenvalues and Eigenvectors

Theorem

Let M ∈ Rn×n be a real symmetric matrix and λ1 ≤ ... ≤ λn be its
real eigenvalues (counted with multiplicities) sorted in non-decreasing
order. Let x1, ..., xk , k < n, be orthonormal vectors such that
Mxi = λixi for i = 1, ..., k . Then

λk+1 = min
x∈Rn−{0}:x⊥x1...,xk

xTMx

xTx

and any minimizer is an eigenvector of λk+1.

Proof sketch

Applying the lemma repeatedly, we can obtain n − k orthogonal
vectors xk+1, ..., xn, where xi is an eigenvector of λi .
Claim 1: xk+1 is a feasible solution for the minimisation problem
and has cost λk+1. So, the minimum us at most λk+1.
Claim 2: For any arbitrary feasible solution x, we can write

x =
∑n

i=1k+1 aixi and this has cost
∑n

i=k+1 λia
2
i∑n

i=k+1 a
2
i
≥ λk+1.

Claim 3: Any minimiser x is a linear combination of eigenvectors
of λk+1 and hence is an eigenvector of λk+1.
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Spectral Graph Theory
Eigenvalues and Eigenvectors

Theorem

Let M ∈ Rn×n be a real symmetric matrix and λ1 ≤ ... ≤ λn be its
real eigenvalues (counted with multiplicities) sorted in non-decreasing
order. Let x1, ..., xk , k < n, be orthonormal vectors such that
Mxi = λixi for i = 1, ..., k . Then

λk+1 = min
x∈Rn−{0}:x⊥x1...,xk

xTMx

xTx

and any minimizer is an eigenvector of λk+1.

The above theorem may also be written in the following manner:

Corollary

Let M ∈ Rn×n be a real symmetric matrix, and λ1 ≤ ... ≤ λn its
eigenvalues, counted with multiplicities and sorted in non-decreasing
order. Then

λk = min
k−dimensional subspace V of Rn

{
max

x∈V−{0}

xTMx

xTx

}
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The basics of spectral graph theory

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Spectral Graph Theory
Basic results

We shall work with d-regular undirected graphs.
It will be convenient to work with the matrix L = I − 1

dA instead
of the adjacency matrix A.
The matrix L defined above is called the Normalized Laplacian
Matrix of the graph.
We prove the following basic results of spectral graph theory.

Theorem

Let G be a d-regular undirected graph, and L = I − 1
dA be its

normalized Laplacian matrix. Let λ1 ≤ λ2 ≤ ... ≤ λn be the real
eigenvalues of L with multiplicities. Then

1 λ1 = 0 and λn ≤ 2.
2 λk = 0 if and only if G has at least k connected components.
3 λn = 2 if and only if at least one of the connected components of

G is bipartite.
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End
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