COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Spectral Graph Theory:

Eigenvalues and graph properties

Spectral Graph Theory

- Graphs are used to model pairwise relationship between objects. The objects are denoted by vertices and pairwise relationships are denoted by edges.
- Classical techniques have had a lot of success in solving various problems on graphs such as shortest path, minimum spanning tree etc.
- More recently, algebraic techniques have been successful for certain graph problems. Such techniques involve analysing the adjacency matrix of the graph.
- The relationship between the structural properties of a given graph and the algebraic properties of the underlying (appropriate variant of) adjacency matrix is key in such analysis.

Spectral Graph Theory

- Graphs are used to model pairwise relationship between objects. The objects are denoted by vertices and pairwise relationships are denoted by edges.
- Classical techniques have had a lot of success in solving various problems on graphs such as shortest path, minimum spanning tree etc.
- More recently, algebraic techniques have been successful for certain graph problems. Such techniques involve analysing the adjacency matrix of the graph.
- The relationship between the structural properties of a given graph and the algebraic properties of the underlying (appropriate variant of) adjacency matrix is key in such analysis.
- Spectral Graph Theory studies how eigenvalues of the adjacency matrix of a graph (an algebraic quantity) relates to combinatorial properties of the graph.
- We will study connectivity property of graphs.
- Question: What is the "gold standard" for connectivity for graphs?
- We will study connectivity property of graphs. In many applications, connectivity is of vital importance.
- Question: What is the "gold standard" for connectivity for graphs? Complete graph or a clique
- Consider a communication network setting. Adding edges has an associated cost. So, ideally we would like to have good connectivity with small number of total edges.
- What does it mean to have good connectivity?
- We will study connectivity property of graphs. In many applications, connectivity is of vital importance.
- Question: What is the "gold standard" for connectivity for graphs? Complete graph or a clique
- Consider a communication network setting. Adding edges has an associated cost. So, ideally we would like to have good connectivity with small number of total edges.
- What does it mean to have good connectivity?
- An intuitive notion is that removing a small fraction of edges of the graph should not disconnect large portions of the graph.
- Sparsity and edge expansion discussed next, are useful in formalizing the notion of connectivity.

Spectral Graph Theory
 Graph Expansion and Sparsest Cut

- Given a graph $G=(V, E)$, a cut in the graph is a partition of vertices into sets S and $V-S$. It is represented as a tuple $(S, V-S)$.

Definition (Sparsity)

The sparsity of a cut $(S, V-S)$, denoted by $\sigma(S)$, is defined as $\sigma(S)=\frac{|V|^{2}}{|E|} \cdot \frac{|E(S, V-S)|}{|S| \cdot|V-S|}$.

- In other words, the sparsity of the cut $(S, V-S)$ is the fraction of edges across the cut divided by the fraction of vertex pairs across the partition (i.e., the fraction of edges in the ideal case of a complete graph).

Spectral Graph Theory
 Graph Expansion and Sparsest Cut

- Given a graph $G=(V, E)$, a cut in the graph is a partition of vertices into sets S and $V-S$. It is represented as a tuple $(S, V-S)$.

Definition (Sparsity)

The sparsity of a cut $(S, V-S)$, denoted by $\sigma(S)$, is defined as $\sigma(S)=\frac{|V|^{2}}{|E|} \cdot \frac{|E(S, V-S)|}{|S| \cdot|V-S|}$.

- In other words, the sparsity of the cut $(S, V-S)$ is the fraction of edges across the cut divided by the fraction of vertex pairs across the partition (i.e., the fraction of edges in the ideal case of a complete graph).
- The sparsest cut problem is to find a non-trivial cut with minimal sparsity.

Spectral Graph Theory
 Graph Expansion and Sparsest Cut

- Given a graph $G=(V, E)$, a cut in the graph is a partition of vertices into sets S and $V-S$. It is represented as a tuple $(S, V-S)$.

Definition (Sparsity)

The sparsity of a cut $(S, V-S)$, denoted by $\sigma(S)$, is defined as $\sigma(S)=\frac{|V|^{2}}{|E|} \cdot \frac{|E(S, V-S)|}{|S| \cdot|V-S|}$.

- The sparsest cut problem is to find a non-trivial cut with minimal sparsity.
- The sparsity of a graph $G=(V, E)$, denoted by $\sigma(G)$, is given by:

$$
\sigma(G)=\min _{S \subseteq V, S \neq \emptyset, S \neq V} \sigma(S) .
$$

Spectral Graph Theory
 Graph Expansion and Sparsest Cut

Definition (Sparsity)

The sparsity of a cut $(S, V-S)$, denoted by $\sigma(S)$, is defined as $\sigma(S)=\frac{|V|^{2}}{|E|} \cdot \frac{|E(S, V-S)|}{|S| \cdot|V-S|}$.

- The sparsity of a graph $G=(V, E)$, denoted by $\sigma(G)$, is given by:

$$
\sigma(G)=\min _{S \subseteq V, S \neq \emptyset, S \neq V} \sigma(S) .
$$

- Note that if the graph is d-regular, then $\sigma(S)=\frac{|E(S, V-S)|}{\frac{D}{|V|} \cdot|S| \cdot|V-S|}$
- The edge expansion of a set of vertices $S \subseteq V$, denoted by $\phi(S)$, of a d-regular graph is given by:

$$
\phi(S)=\frac{|E(S, V-S)|}{d \cdot|S|}
$$

Spectral Graph Theory
 Graph Expansion and Sparsest Cut

Definition (Sparsity)

The sparsity of a cut $(S, V-S)$, denoted by $\sigma(S)$, is defined as $\sigma(S)=\frac{|V|^{2}}{|E|} \cdot \frac{|E(S, V-S)|}{|S| \cdot|V-S|}$.

- The sparsity of a graph $G=(V, E)$, denoted by $\sigma(G)$, is given by:

$$
\sigma(G)=\min _{S \subseteq V, S \neq \emptyset, S \neq V} \sigma(S) .
$$

- Note that if the graph is d-regular, then $\sigma(S)=\frac{|E(S, V-S)|}{\frac{V}{|V|} \cdot|S| \cdot|V-S|}$
- The edge expansion of a set of vertices $S \subseteq V$, denoted by $\phi(S)$, of a d-regular graph is given by: $\phi(S)=\frac{|E(S, V-S)|}{d \cdot|S|}$.
- The edge expansion of a d-regular graph is given by $\phi(G)=\min _{S:|S| \leq|V| / 2} \phi(S)$.

Spectral Graph Theory
 Graph Expansion and Sparsest Cut

- Note that if the graph is d-regular, then $\sigma(S)=\frac{|E(S, V-S)|}{\frac{V}{\mid V} \cdot|S| \cdot|V-S|}$
- The edge expansion of a set of vertices $S \subseteq V$, denoted by $\phi(S)$, of a d-regular graph is given by: $\phi(S)=\frac{|E(S, V-S)|}{d \cdot|S|}$.
- The edge expansion of a d-regular graph is given by $\phi(G)=\min _{S:|S| \leq|V| / 2} \phi(S)$.
- Claim 1: For every set S such that $|S| \leq|V| / 2$, $\frac{1}{2} \sigma(S) \leq \phi(S) \leq \sigma(S)$.

Spectral Graph Theory
 Graph Expansion and Sparsest Cut

- Note that if the graph is d-regular, then $\sigma(S)=\frac{|E(S, V-S)|}{\frac{V}{|V|} \cdot|S| \cdot|V-S|}$
- The edge expansion of a set of vertices $S \subseteq V$, denoted by $\phi(S)$, of a d-regular graph is given by: $\phi(S)=\frac{|E(S, V-S)|}{d \cdot|S|}$.
- The edge expansion of a d-regular graph is given by $\phi(G)=\min _{S:|S| \leq|V| / 2} \phi(S)$.
- Claim 1: For every set S such that $|S| \leq|V| / 2$, $\frac{1}{2} \sigma(S) \leq \phi(S) \leq \sigma(S)$.
- Claim 2: $\frac{1}{2} \sigma(G) \leq \phi(G) \leq \sigma(G)$.

Spectral Graph Theory
 Graph Expansion and Sparsest Cut

- Note that if the graph is d-regular, then $\sigma(S)=\frac{|E(S, V-S)|}{\frac{d}{|V|} \cdot|S| \cdot|V-S|}$
- The edge expansion of a set of vertices $S \subseteq V$, denoted by $\phi(S)$, of a d-regular graph is given by: $\phi(S)=\frac{|E(S, V-S)|}{d \cdot|S|}$.
- The edge expansion of a d-regular graph is given by $\phi(G)=\min _{S:|S| \leq|V| / 2} \phi(S)$.
- Claim 1: For every set S such that $|S| \leq|V| / 2$, $\frac{1}{2} \sigma(S) \leq \phi(S) \leq \sigma(S)$.
- Claim 2: $\frac{1}{2} \sigma(G) \leq \phi(G) \leq \sigma(G)$.
- Constant degree graphs with constant expansion are sparse graphs with good connectivity property.

Theorem

Let $G=(V, E)$ be a regular graph of expansion ϕ. Then, after an $\varepsilon<\phi$ fraction of edges are adversarially removed, the graph has a connected component that spans at least $\left(1-\frac{\varepsilon}{2 \phi}\right)$ fraction of vertices.

Spectral Graph Theory
 Graph Expansion and Sparsest Cut

Theorem

Let $G=(V, E)$ be a regular graph of expansion ϕ. Then, after an $\varepsilon<\phi$ fraction of edges are adversarially removed, the graph has a connected component that spans at least $\left(1-\frac{\varepsilon}{2 \phi}\right)$ fraction of vertices.

- In a d-regular expander (i.e., constant expansion), the removal of k edges can cause $O(k / d)$ vertices to be disconnected from the remaining giant component.
- It is always possible to disconnect k / d vertices after removing k edges. So, the reliability of an expander is the best possible.

Linear Algebra Recap: Eigenvalues

Spectral Graph Theory

Eigenvalues and Eigenvectors

- The conjugate of a complex number $x=a+i b$ is denoted by \bar{x} and has value $\bar{x}=a-i b$.
- For a complex matrix $M \in \mathbb{C}^{m \times n}$, the conjugate transpose of M, denoted by $M^{\star} \in \mathbb{C}^{n \times m}$ such that $\left(M^{\star}\right)_{i, j}=\bar{M}_{j, i}$.
- The inner product of two vectors \mathbf{x} and \mathbf{y} is defined as $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\star} \mathbf{y}$.

Definition (Eigenvalue and eigenvector)

For a square matrix $M \in \mathbb{C}^{n \times n}, \lambda \in \mathbb{C}$ is a scalar, $\mathbf{x} \in \mathbb{C}^{n}-\{\mathbf{0}\}$ is a non-zero vector and

$$
M \mathbf{x}=\lambda \mathbf{x}
$$

then we say that λ is an eigenvalue of M and \mathbf{x} is an eigenvector of M corresponding to eigenvalue λ.

Spectral Graph Theory

Eigenvalues and Eigenvectors

Definition (Eigenvalue and eigenvector)

For a square matrix $M \in \mathbb{C}^{n \times n}, \lambda \in \mathbb{C}$ is a scalar, $\mathbf{x} \in \mathbb{C}^{n}-\{\mathbf{0}\}$ is a non-zero vector and

$$
M \mathbf{x}=\lambda \mathbf{x}
$$

then we say that λ is an eigenvalue of M and \mathbf{x} is an eigenvector of M corresponding to eigenvalue λ.

- The equation $M \mathbf{x}=\lambda \mathbf{x}$ can alternatively be written as $(M-\lambda I) \mathbf{x}=\mathbf{0}$.
- This is equivalent to $\operatorname{det}(M-\lambda I)=0$.
- The LHS of the equation is a polynomial of degree n in λ and so has n solutions (counting multiplicities).
- We will be studying the eigenvalues of adjacency matrices of undirected graphs which are real and symmetric. Next, we look at some properties of such matrices.

Spectral Graph Theory

Eigenvalues and Eigenvectors

Definition (Eigenvalue and eigenvector)

For a square matrix $M \in \mathbb{C}^{n \times n}, \lambda \in \mathbb{C}$ is a scalar, $\mathbf{x} \in \mathbb{C}^{n}-\{\mathbf{0}\}$ is a non-zero vector and

$$
M \mathbf{x}=\lambda \mathbf{x}
$$

then we say that λ is an eigenvalue of M and \mathbf{x} is an eigenvector of M corresponding to eigenvalue λ.

- We will be studying the eigenvalues of adjacency matrices of undirected graphs which are real and symmetric. Next, we look at some properties of such matrices.
- A square matrix $M \in \mathbb{C}^{n \times n}$ is called Hermitian iff $M=M^{\star}$.

Lemma

If M is Hermitian, then all eigenvalues of M are real.

Spectral Graph Theory

Eigenvalues and Eigenvectors

- We will be studying the eigenvalues of adjacency matrices of undirected graphs which are real and symmetric. Next, we look at some properties of such matrices.
- A square matrix $M \in \mathbb{C}^{n \times n}$ is called Hermitian iff $M=M^{\star}$.

Lemma

If M is Hermitian, then all eigenvalues of M are real.

Lemma

If M is a Hermitian matrix and \mathbf{x} and \mathbf{y} are eigenvectors of different eigenvalues, then \mathbf{x} and \mathbf{y} are orthogonal (i.e., $\langle\mathbf{x}, \mathbf{y}\rangle=0$).

Spectral Graph Theory
 Eigenvalues and Eigenvectors

- We will be studying the eigenvalues of adjacency matrices of undirected graphs which are real and symmetric. Next, we look at some properties of such matrices.
- A square matrix $M \in \mathbb{C}^{n \times n}$ is called Hermitian iff $M=M^{\star}$.

Lemma

If M is Hermitian, then all eigenvalues of M are real.

Lemma

If M is a Hermitian matrix and \mathbf{x} and \mathbf{y} are eigenvectors of different eigenvalues, then \mathbf{x} and \mathbf{y} are orthogonal (i.e., $\langle\mathbf{x}, \mathbf{y}\rangle=0$).

- We need another characterisation of eigenvalues and eigenvectors that help us relate these quantities with combinatorial properties of graphs such as connectivity.

Spectral Graph Theory

Eigenvalues and Eigenvectors

- We need another characterisation of eigenvalues and eigenvectors that help us relate these quantities with combinatorial properties of graphs such as connectivity.

Theorem

Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix and $\lambda_{1} \leq \ldots \leq \lambda_{n}$ be its real eigenvalues (counted with multiplicities) sorted in non-decreasing order. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, k<n$, be orthonormal vectors such that $M \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$ for $i=1, \ldots, k$. Then

$$
\lambda_{k+1}=\min _{\mathbf{x} \in \mathbb{R}^{n}-\{0\}: \mathbf{x} \perp \mathbf{x}_{1} \ldots, \mathbf{x}_{k}} \frac{\mathbf{x}^{\top} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

and any minimizer is an eigenvector of λ_{k+1}.

Spectral Graph Theory

Eigenvalues and Eigenvectors

Theorem

Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix and $\lambda_{1} \leq \ldots \leq \lambda_{n}$ be its real eigenvalues (counted with multiplicities) sorted in non-decreasing order. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, k<n$, be orthonormal vectors such that $M \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$ for $i=1, \ldots, k$. Then

$$
\lambda_{k+1}=\min _{\mathbf{x} \in \mathbb{R}^{n}-\{\mathbf{0}\}: \mathbf{x} \perp \mathbf{x}_{1} \ldots, \mathbf{x}_{k}} \frac{\mathbf{x}^{T} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

and any minimizer is an eigenvector of λ_{k+1}.

- We need the following lemma.

Lemma

Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix, and let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, k<n$ be orthogonal eigenvectors of M. Then there is an eigenvector \mathbf{x}_{k+1} of M that is orthogonal to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$.

Spectral Graph Theory Eigenvalues and Eigenvectors

Theorem

Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix and $\lambda_{1} \leq \ldots \leq \lambda_{n}$ be its real eigenvalues (counted with multiplicities) sorted in non-decreasing order. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, k<n$, be orthonormal vectors such that $M \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$ for $i=1, \ldots, k$. Then

$$
\lambda_{k+1}=\min _{\mathbf{x} \in \mathbb{R}^{n}-\{0\}: x \perp \mathbf{x}_{1} \ldots, \mathbf{x}_{k}} \frac{\mathbf{x}^{T} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

and any minimizer is an eigenvector of λ_{k+1}.

- We need the following lemma.

Lemma

Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix, and let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, k<n$ be orthogonal eigenvectors of M. Then there is an eigenvector \mathbf{x}_{k+1} of M that is orthogonal to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$.

- The above lemma has the following interesting corollary.

Corollary (Spectral theorem)

Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix, and $\lambda_{1}, \ldots, \lambda_{n}$ be its real eigenvalues, with multiplicities; then there are orthonormal vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{x}_{i} \in \mathbb{R}^{n}$ such that \mathbf{x}_{i} is an eigenvector of λ_{i}.

Spectral Graph Theory

Eigenvalues and Eigenvectors

Theorem

Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix and $\lambda_{1} \leq \ldots \leq \lambda_{n}$ be its real eigenvalues (counted with multiplicities) sorted in non-decreasing order. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, k<n$, be orthonormal vectors such that $M \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$ for $i=1, \ldots, k$. Then

$$
\lambda_{k+1}=\min _{\mathbf{x} \in \mathbb{R}^{n}-\{0\}: \mathbf{x} \perp \mathbf{x}_{1} \ldots, \mathbf{x}_{k}} \frac{\mathbf{x}^{T} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

and any minimizer is an eigenvector of λ_{k+1}.

Proof sketch

- Applying the lemma repeatedly, we can obtain $n-k$ orthogonal vectors $\mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}$, where \mathbf{x}_{i} is an eigenvector of λ_{i}.
- Claim 1: \mathbf{x}_{k+1} is a feasible solution for the minimisation problem and has cost λ_{k+1}. So, the minimum us at most λ_{k+1}.
- Claim 2: For any arbitrary feasible solution \mathbf{x}, we can write $\mathbf{x}=\sum_{i=1 k+1}^{n} a_{i} \mathbf{x}_{i}$ and this has cost $\frac{\sum_{i=k+1}^{n} \lambda_{i} a_{i}^{2}}{\sum_{i=k+1}^{n} a_{i}^{2}} \geq \lambda_{k+1}$.
- Claim 3: Any minimiser \mathbf{x} is a linear combination of eigenvectors of λ_{k+1} and hence is an eigenvector of λ_{k+1}.

Spectral Graph Theory

Eigenvalues and Eigenvectors

Theorem

Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix and $\lambda_{1} \leq \ldots \leq \lambda_{n}$ be its real eigenvalues (counted with multiplicities) sorted in non-decreasing order. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, k<n$, be orthonormal vectors such that $M \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$ for $i=1, \ldots, k$. Then

$$
\lambda_{k+1}=\min _{\mathbf{x} \in \mathbb{R}^{n}-\{0\}: \mathbf{x} \perp \mathbf{x}_{1} \ldots, \mathbf{x}_{k}} \frac{\mathbf{x}^{\top} M \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}
$$

and any minimizer is an eigenvector of λ_{k+1}.

- The above theorem may also be written in the following manner:

Corollary

Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix, and $\lambda_{1} \leq \ldots \leq \lambda_{n}$ its eigenvalues, counted with multiplicities and sorted in non-decreasing order. Then

$$
\lambda_{k}=\min _{k-\text { dimensional subspace }} V \text { of } \mathbb{R}^{n}\left\{\max _{\mathbf{x} \in V-\{\mathbf{0}\}} \frac{\mathbf{x}^{T} M \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}\right\}
$$

The basics of spectral graph theory

Spectral Graph Theory

- We shall work with d-regular undirected graphs.
- It will be convenient to work with the matrix $L=I-\frac{1}{d} A$ instead of the adjacency matrix A.
- The matrix L defined above is called the Normalized Laplacian Matrix of the graph.
- We prove the following basic results of spectral graph theory.

Theorem

Let G be a d-regular undirected graph, and $L=I-\frac{1}{d} A$ be its normalized Laplacian matrix. Let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the real eigenvalues of L with multiplicities. Then
(1) $\lambda_{1}=0$ and $\lambda_{n} \leq 2$.
(2) $\lambda_{k}=0$ if and only if G has at least k connected components.
(3) $\lambda_{n}=2$ if and only if at least one of the connected components of G is bipartite.

End

