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Singular vectors and Eigenvectors
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Singular Value Decomposition (SVD)
Singular vectors and Eigenvectors

For a square matrix B, if Bx = λx, then x is said to be an
eigenvector of B and λ the corresponding eigenvalue.
For a rectangular n × d matrix A, let B = ATA.
Claim 1: The right singular vectors of A are the eigenvectors of B.
Claim 2: The left singular vectors of A are the eigenvectors of
AAT .
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Singular Value Decomposition (SVD)
Singular vectors and Eigenvectors

For a square matrix B, if Bx = λx, then x is said to be an
eigenvector of B and λ the corresponding eigenvalue.
For a rectangular n × d matrix A, let B = ATA.
Claim 1: The right singular vectors of A are the eigenvectors of B.
Claim 2: The left singular vectors of A are the eigenvectors of
AAT .
Claim 3: For every x, xTBx ≥ 0. Such matrices are called positive
semidefinite.
Fact: Any positive semidefinite matrix can be decomposed into a
product ATA.
So, eigen decomposition of any positive semidefine matrix may be
obtained from SVD of A.
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Singular Value Decomposition (SVD)
Applications of SVD

The line through the origin that minimizes the sum of squared
distances is defined by the first singular vector.
Question: What if we drop the constraint that the line should
pass through the origin? This general case is more relevant in
data analysis.
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Singular Value Decomposition (SVD)
Applications of SVD

The line through the origin that minimizes the sum of squared
distances is defined by the first singular vector.
Question: What if we drop the constraint that the line should
pass through the origin? This general case is more relevant in
data analysis.

Theorem

The best fit line of a set of data points must pass through the centroid
of the points.
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Singular Value Decomposition (SVD)
Applications of SVD

Theorem

The best fit line of a set of data points must pass through the centroid
of the points.

We can generalize for higher dimensional objects.

Definition (Affine subspace)

An affince subspace is a subspace translated by a vector. So, it is a set
of the form: {v0 +

∑k
i=1 civi |c1, ..., ck ∈ R}. Here v0 is the translation

and v1, ..., vk form an orthonormal basis of the subspace.

Theorem

The k-dimensional affine space that minimizes the sum of squared
perpendicular distances to the data points must pass through the
centroid of the points.
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Singular Value Decomposition (SVD)
Applications of SVD: PCA

Theorem

The best fit line of a set of data points must pass through the centroid
of the points.

Theorem

The k-dimensional affine space that minimizes the sum of squared
perpendicular distances to the data points must pass through the
centroid of the points.

Given the above, the standard first step in data analysis is to
center the data which means subtracting the centroid from all the
data points (so that the origin is the centroid).
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Singular Value Decomposition (SVD)
Applications of SVD: PCA

Given the above, the standard first step in data analysis is to
center the data which means subtracting the centroid from all the
data points (so that the origin is the centroid).
Usually, a next natural data analysis investigation on the centered
data is to find the principle components of the data. That is, the
directions along which the data has the maximum variation.
Our discussion of Singular values and Singular vectors are already
in tune with this idea. Note that the Singular vectors give the
direction along which the data has the maximum variance.
If we consider the projection Y of the data points X onto Vk

(i.e., the subspace defined by the first k Singular vectors), then Y
may have much smaller dimension than X and yet has most of
the “content” of the original data X .
This is a standard dimension reduction technique and is popularly
known as Principal Component Analysis (PCA).
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Singular Value Decomposition (SVD)
Applications of SVD: Linear Regression

Linear regression: Given x1, ..., xm ∈ Rd and y1, ..., ym ∈ R we
want to find a vector w that minimizes:

n∑
i=1

(xTi w − yi ) = ||Aw − y||2.

Where A is a matrix with the i th row as xTi .
The following theorem gives a very nice application of SVD.

Theorem

The vector w that minimizes ||Aw − y||2 is w = A†y = VD†UTy for

A = UDV T and D†ii = 1/Dii for all i .
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Spectral Graph Theory:
Eigenvalues and graph properties
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Spectral Graph Theory

Graphs are used to model pairwise relationship between
objects. The objects are denoted by vertices and pairwise
relationships are denoted by edges.

Classical techniques have had a lot of success in solving
various problems on graphs such as shortest path, minimum
spanning tree etc.

More recently, algebraic techniques have been successful for
certain graph problems. Such techniques involve analysing the
adjacency matrix of the graph.

The relationship between the structural properties of a given
graph and the algebraic properties of the underlying
(appropriate variant of) adjacency matrix is key in such
analysis.
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Spectral Graph Theory

Graphs are used to model pairwise relationship between
objects. The objects are denoted by vertices and pairwise
relationships are denoted by edges.

Classical techniques have had a lot of success in solving
various problems on graphs such as shortest path, minimum
spanning tree etc.

More recently, algebraic techniques have been successful for
certain graph problems. Such techniques involve analysing the
adjacency matrix of the graph.

The relationship between the structural properties of a given
graph and the algebraic properties of the underlying
(appropriate variant of) adjacency matrix is key in such
analysis.

Spectral Graph Theory studies how eigenvalues of the
adjacency matrix of a graph (an algebraic quantity) relates to
combinatorial properties of the graph.
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

We will study connectivity property of graphs.

Question: What is the “gold standard” for connectivity for
graphs?
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

We will study connectivity property of graphs. In many
applications, connectivity is of vital importance.

Question: What is the “gold standard” for connectivity for
graphs? Complete graph or a clique

Consider a communication network setting. Adding edges has
an associated cost. So, ideally we would like to have good
connectivity with small number of total edges.

What does it mean to have good connectivity?
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

We will study connectivity property of graphs. In many
applications, connectivity is of vital importance.

Question: What is the “gold standard” for connectivity for
graphs? Complete graph or a clique

Consider a communication network setting. Adding edges has
an associated cost. So, ideally we would like to have good
connectivity with small number of total edges.

What does it mean to have good connectivity?

An intuitive notion is that removing a small fraction of edges
of the graph should not disconnect large portions of the graph.

Sparsity and edge expansion discussed next, are useful in
formalizing the notion of connectivity.
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Given a graph G = (V ,E ), a cut in the graph is a partition of
vertices into sets S and V − S . It is represented as a tuple
(S ,V − S).

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

In other words, the sparsity of the cut (S ,V − S) is the
fraction of edges across the cut divided by the fraction of
vertex pairs across the partition (i.e., the fraction of edges in
the ideal case of a complete graph).

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Spectral Graph Theory
Graph Expansion and Sparsest Cut

Given a graph G = (V ,E ), a cut in the graph is a partition of
vertices into sets S and V − S . It is represented as a tuple
(S ,V − S).

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

In other words, the sparsity of the cut (S ,V − S) is the fraction
of edges across the cut divided by the fraction of vertex pairs
across the partition (i.e., the fraction of edges in the ideal case of
a complete graph).
The sparsest cut problem is to find a non-trivial cut with minimal
sparsity.
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Given a graph G = (V ,E ), a cut in the graph is a partition of
vertices into sets S and V − S . It is represented as a tuple
(S ,V − S).

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

The sparsest cut problem is to find a non-trivial cut with minimal
sparsity.
The sparsity of a graph G = (V ,E ), denoted by σ(G ), is given by:

σ(G ) = min
S⊆V ,S 6=∅,S 6=V

σ(S).
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

The sparsity of a graph G = (V ,E ), denoted by σ(G ), is given by:

σ(G ) = min
S⊆V ,S 6=∅,S 6=V

σ(S).

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S |·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),
of a d-regular graph is given by:

φ(S) =
|E (S ,V − S)|

d · |S |
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Definition (Sparsity)

The sparsity of a cut (S ,V − S), denoted by σ(S), is defined as

σ(S) = |V |2
|E | ·

|E(S,V−S)|
|S|·|V−S | .

The sparsity of a graph G = (V ,E ), denoted by σ(G ), is given by:

σ(G ) = min
S⊆V ,S 6=∅,S 6=V

σ(S).

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S |·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),

of a d-regular graph is given by: φ(S) = |E(S,V−S)|
d ·|S| .

The edge expansion of a d-regular graph is given by
φ(G ) = minS :|S |≤|V |/2 φ(S).
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S|·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),

of a d-regular graph is given by: φ(S) = |E(S,V−S)|
d ·|S| .

The edge expansion of a d-regular graph is given by
φ(G ) = minS :|S |≤|V |/2 φ(S).
Claim 1: For every set S such that |S | ≤ |V |/2,
1
2σ(S) ≤ φ(S) ≤ σ(S).
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S|·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),

of a d-regular graph is given by: φ(S) = |E(S,V−S)|
d ·|S| .

The edge expansion of a d-regular graph is given by
φ(G ) = minS :|S |≤|V |/2 φ(S).
Claim 1: For every set S such that |S | ≤ |V |/2,
1
2σ(S) ≤ φ(S) ≤ σ(S).
Claim 2: 1

2σ(G ) ≤ φ(G ) ≤ σ(G ).
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Note that if the graph is d-regular, then σ(S) = |E(S ,V−S)|
d
|V | ·|S|·|V−S |

The edge expansion of a set of vertices S ⊆ V , denoted by φ(S),

of a d-regular graph is given by: φ(S) = |E(S,V−S)|
d ·|S| .

The edge expansion of a d-regular graph is given by
φ(G ) = minS :|S |≤|V |/2 φ(S).
Claim 1: For every set S such that |S | ≤ |V |/2,
1
2σ(S) ≤ φ(S) ≤ σ(S).
Claim 2: 1

2σ(G ) ≤ φ(G ) ≤ σ(G ).
Constant degree graphs with constant expansion are sparse
graphs with good connectivity property.

Theorem

Let G = (V ,E ) be a regular graph of expansion φ. Then, after an
ε < φ fraction of edges are adversarially removed, the graph has a
connected component that spans at least (1− ε

2φ) fraction of vertices.
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Spectral Graph Theory
Graph Expansion and Sparsest Cut

Theorem

Let G = (V ,E ) be a regular graph of expansion φ. Then, after an
ε < φ fraction of edges are adversarially removed, the graph has a
connected component that spans at least (1− ε

2φ) fraction of vertices.

In a d-regular expander (i.e., constant expansion), the removal of
k edges can cause O(k/d) vertices to be disconnected from the
remaining giant component.
It is always possible to disconnect k/d vertices after removing k
edges. So, the reliability of an expander is the best possible.
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End
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