COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Power Method for Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

Power method for SVD

- Let $B=A^{T} A$
- Question: Can you point out some interesting properties of B ?

Singular Value Decomposition (SVD)

Power method for SVD

- Let $B=A^{T} A$
- $B=\sum_{i=1}^{r} \sigma_{i}^{2} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$

Singular Value Decomposition (SVD)

Power method for SVD

- Let $B=A^{T} A$
- $B=\sum_{i=1}^{r} \sigma_{i}^{2} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$
- Question: Can we obtain a similar expression for B^{2} and in general B^{k} ?

Singular Value Decomposition (SVD)

Power method for SVD

- Let $B=A^{T} A$
- $B=\sum_{i=1}^{r} \sigma_{i}^{2} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$
- Question: Can we obtain a similar expression for B^{2} and in general B^{k} ?
- $B^{k}=\sum_{i=1}^{r} \sigma_{i}^{2 k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$
- So, if $\sigma_{1}>\sigma_{2}$, then normalizing the first column of B^{k} should give a good estimate for \mathbf{v}_{1}.

Singular Value Decomposition (SVD)

Power method for SVD

- Let $B=A^{T} A$
- $B=\sum_{i=1}^{r} \sigma_{i}^{2} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$
- Question: Can we obtain a similar expression for B^{2} and in general B^{k} ?
- $B^{k}=\sum_{i=1}^{r} \sigma_{i}^{2 k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$
- So, if $\sigma_{1}>\sigma_{2}$, then normalizing the first column of B^{k} should give a good estimate for \mathbf{v}_{1}.
- A faster method:
- Computing B^{k} may be costly.
- Select a random vector $\mathbf{x}=\sum_{i=1}^{d} c_{i} \mathbf{v}_{i}$.
- Claim: $B^{k} \mathbf{x} \approx \sigma_{1}^{2 k} c_{1} \mathbf{v}_{1}$
- So, normalizing $B^{k} \mathbf{x}$ approximates \mathbf{v}_{1}.

Singular Value Decomposition (SVD)

Power method for SVD

- A faster method:
- Computing B^{k} may be costly.
- Select a random vector $\mathbf{x}=\sum_{i=1}^{d} c_{i} \mathbf{v}_{i}$.
- Claim: $B^{k} \mathbf{x} \approx \sigma_{1}^{2 k} c_{1} \mathbf{v}_{1}$
- So, normalizing $B^{k} \mathbf{x}$ approximates \mathbf{v}_{1}.
- Given $\min _{i<j} \log \left(\frac{\sigma_{i}}{\sigma_{j}}\right) \geq \lambda$, the following algorithm estimates (within ε error with probability $\geq(1-\delta))$ the first singular value and singular vectors.

Algorithm

1. Generate \mathbf{x}_{0} from a spherical gaussian with mean 0 and variance 1 .
2. $s \leftarrow \log \left(\frac{8 d \log (2 d / \delta)}{\varepsilon \delta}\right) / 2 \lambda$
3. For $i=1$ to s
4. $\mathbf{x}_{i} \leftarrow\left(A^{T} A\right) \mathbf{x}_{i-1}$
5. $\mathbf{v}_{1} \leftarrow \mathbf{x}_{i} /\left\|\mathbf{x}_{i}\right\|$
6. $\sigma_{1} \leftarrow\left\|A \mathbf{v}_{1}\right\|$
7. $\mathbf{u}_{1} \leftarrow A \mathbf{v}_{1} / \sigma_{1}$
8. return $\left(\sigma_{1}, \mathbf{u}_{1}, \mathbf{v}_{1}\right)$

Singular Value Decomposition (SVD)

Power method for SVD

- Let $B=A^{T} A$
- $B=\sum_{i=1}^{r} \sigma_{i}^{2} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$
- Question: Can we obtain a similar expression for B^{2} and in general B^{k} ?
- $B^{k}=\sum_{i=1}^{r} \sigma_{i}^{2 k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$
- So, if $\sigma_{1}>\sigma_{2}$, then normalizing the first column of B^{k} should give a good estimate for \mathbf{v}_{1}.
- A faster method:
- Computing B^{k} may be costly.
- Select a random vector $\mathbf{x}=\sum_{i=1}^{d} c_{i} \mathbf{v}_{i}$.
- Claim: $B^{k} \mathbf{x} \approx \sigma_{1}^{2 k} c_{1} \mathbf{v}_{1}$
- So, normalizing $B^{k} \mathbf{x}$ approximates \mathbf{v}_{1}.
- The above approximations are with respect to the fact that σ_{1} is significantly larger than σ_{2}. What if this is not true?

Singular Value Decomposition (SVD)

Power method for SVD

- Let $B=A^{T} A$
- $B=\sum_{i=1}^{r} \sigma_{i}^{2} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$
- Question: Can we obtain a similar expression for B^{2} and in general
- $B^{k}=\sum_{i=1}^{r} \sigma_{i}^{2 k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}$
- So, if $\sigma_{1}>\sigma_{2}$, then normalizing the first column of B^{k} should give a good estimate for \mathbf{v}_{1}.
- A faster method:
- Computing B^{k} may be costly.
- Select a random vector $\mathbf{x}=\sum_{i=1}^{d} c_{i} \mathbf{v}_{i}$.
- Claim: $B^{k} \mathbf{x} \approx \sigma_{1}^{2 k} c_{1} \mathbf{v}_{1}$
- So, normalizing $B^{k} \mathbf{x}$ approximates \mathbf{v}_{1}.
- The above approximations are with respect to the fact that σ_{1} is significantly larger than σ_{2}. What if this is not true?

Theorem

Let A be an $n \times d$ matrix and \mathbf{x} a unit length vector in \mathbb{R}^{d} with $\mathbf{x}_{t} \mathbf{v}_{1} \geq \delta$, where $\delta>0$. Let V be the space spanned by the right singular vectors of A corresponding to singular values greater than $(1-\epsilon) \sigma_{1}$. Let w be the unit vector after $k=\frac{\ln 1 / \epsilon \delta}{2 \epsilon}$ iterations of the power method, namely $\mathbf{w}=\frac{\left(A^{\top} A\right)^{k} \mathbf{x}}{\left\|\left(A^{\top} A\right)^{k} \mathbf{x}\right\|}$. Then \mathbf{w} has a component of at most ϵ perpendicular to V.

End

