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Power Method for Singular Value Decomposition (SVD)
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Singular Value Decomposition (SVD)
Power method for SVD

Let B = ATA
Question: Can you point out some interesting properties of B?
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Question: Can we obtain a similar expression for B2 and in general
Bk?
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So, if σ1 > σ2, then normalizing the first column of Bk should give a
good estimate for v1.
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So, if σ1 > σ2, then normalizing the first column of Bk should give a
good estimate for v1.
A faster method:

Computing Bk may be costly.
Select a random vector x =

∑d
i=1 civi .

Claim: Bkx ≈ σ2k
1 c1v1

So, normalizing Bkx approximates v1.
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Singular Value Decomposition (SVD)
Power method for SVD

A faster method:

Computing Bk may be costly.
Select a random vector x =

∑d
i=1 civi .

Claim: Bkx ≈ σ2k
1 c1v1

So, normalizing Bkx approximates v1.

Given mini<j log (σiσj ) ≥ λ, the following algorithm estimates (within ε

error with probability ≥ (1− δ)) the first singular value and singular
vectors.

Algorithm

1. Generate x0 from a spherical gaussian with mean 0 and variance 1.

2. s ← log
(
8d log (2d/δ)

εδ

)
/2λ

3. For i = 1 to s
4. xi ← (ATA)xi−1
5. v1 ← xi/||xi ||
6. σ1 ← ||Av1||
7. u1 ← Av1/σ1
8. return(σ1,u1, v1)
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So, if σ1 > σ2, then normalizing the first column of Bk should give a
good estimate for v1.
A faster method:

Computing Bk may be costly.
Select a random vector x =

∑d
i=1 civi .

Claim: Bkx ≈ σ2k
1 c1v1

So, normalizing Bkx approximates v1.

The above approximations are with respect to the fact that σ1 is
significantly larger than σ2. What if this is not true?
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A faster method:

Computing Bk may be costly.
Select a random vector x =
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Claim: Bkx ≈ σ2k
1 c1v1

So, normalizing Bkx approximates v1.

The above approximations are with respect to the fact that σ1 is
significantly larger than σ2. What if this is not true?

Theorem

Let A be an n × d matrix and x a unit length vector in Rd with xtv1 ≥ δ,
where δ > 0. Let V be the space spanned by the right singular vectors of
A corresponding to singular values greater than (1− ε)σ1. Let w be the

unit vector after k = ln 1/εδ
2ε iterations of the power method, namely

w = (ATA)kx
||(ATA)kx|| . Then w has a component of at most ε perpendicular to V .
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End
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