COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

< ≣ ▶

Power Method for Singular Value Decomposition (SVD)

3 N 3

- Let $B = A^T A$
- <u>Question</u>: Can you point out some interesting properties of B?

• Let
$$B = A^T A$$

• $B = \sum_{i=1}^r \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$

Э

伺 ト イヨト イヨト

- Let $B = A^T A$
- $B = \sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$
- Question: Can we obtain a similar expression for B^2 and in general B^k ?

- Let $B = A^T A$
- $B = \sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$
- Question: Can we obtain a similar expression for B^2 and in general B^k ?
- $B^k = \sum_{i=1}^r \sigma_i^{2k} \mathbf{v}_i \mathbf{v}_i^T$
- So, if σ₁ > σ₂, then normalizing the first column of B^k should give a good estimate for v₁.

- Let $B = A^T A$
- $B = \sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$
- Question: Can we obtain a similar expression for B^2 and in general $\overline{B^k}$?
- $B^k = \sum_{i=1}^r \sigma_i^{2k} \mathbf{v}_i \mathbf{v}_i^T$
- So, if σ₁ > σ₂, then normalizing the first column of B^k should give a good estimate for v₁.
- A faster method:
 - Computing B^k may be costly.
 - Select a random vector $\mathbf{x} = \sum_{i=1}^{d} c_i \mathbf{v}_i$.
 - <u>Claim</u>: $B^k \mathbf{x} \approx \sigma_1^{2k} c_1 \mathbf{v}_1$
 - So, normalizing $B^k \mathbf{x}$ approximates \mathbf{v}_1 .

- A faster method:
 - Computing B^k may be costly.
 - Select a random vector $\mathbf{x} = \sum_{i=1}^{d} c_i \mathbf{v}_i$.
 - <u>Claim</u>: $B^k \mathbf{x} \approx \sigma_1^{2k} c_1 \mathbf{v}_1$
 - So, normalizing $B^k \mathbf{x}$ approximates \mathbf{v}_1 .
- Given $\min_{i < j} \log \left(\frac{\sigma_i}{\sigma_j} \right) \ge \lambda$, the following algorithm estimates (within ε error with probability $\ge (1 \delta)$) the first singular value and singular vectors.

Algorithm

- 1. Generate \mathbf{x}_0 from a spherical gaussian with mean 0 and variance 1. 2. $s \leftarrow \log\left(\frac{8d\log(2d/\delta)}{\varepsilon\delta}\right)/2\lambda$
- 3. For i = 1 to s 4. $\mathbf{x}_i \leftarrow (A^T A) \mathbf{x}_{i-1}$ 5. $\mathbf{v}_1 \leftarrow \mathbf{x}_i / ||\mathbf{x}_i||$ 6. $\sigma_1 \leftarrow ||A\mathbf{v}_1||$ 7. $\mathbf{u}_1 \leftarrow A\mathbf{v}_1 / \sigma_1$ 8. return $(\sigma_1, \mathbf{u}_1, \mathbf{v}_1)$

- Let $B = A^T A$
- $B = \sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$
- Question: Can we obtain a similar expression for B^2 and in general $\overline{B^k}$?
- $B^k = \sum_{i=1}^r \sigma_i^{2k} \mathbf{v}_i \mathbf{v}_i^T$
- So, if σ₁ > σ₂, then normalizing the first column of B^k should give a good estimate for v₁.
- A faster method:
 - Computing B^k may be costly.
 - Select a random vector $\mathbf{x} = \sum_{i=1}^{d} c_i \mathbf{v}_i$.
 - <u>Claim</u>: $B^k \mathbf{x} \approx \sigma_1^{2k} c_1 \mathbf{v}_1$
 - So, normalizing $B^k \mathbf{x}$ approximates \mathbf{v}_1 .
- The above approximations are with respect to the fact that σ_1 is significantly larger than σ_2 . What if this is not true?

- - E b - 4 E b

- Let $B = A^T A$
- $B = \sum_{i=1}^{r} \sigma_i^2 \mathbf{v}_i \mathbf{v}_i^T$
- Question: Can we obtain a similar expression for B^2 and in general $\overline{B^k?}$
- $B^k = \sum_{i=1}^r \sigma_i^{2k} \mathbf{v}_i \mathbf{v}_i^T$
- So, if σ₁ > σ₂, then normalizing the first column of B^k should give a good estimate for v₁.
- A faster method:
 - Computing B^k may be costly.
 - Select a random vector $\mathbf{x} = \sum_{i=1}^{d} c_i \mathbf{v}_i$.
 - <u>Claim</u>: $B^k \mathbf{x} \approx \sigma_1^{2k} c_1 \mathbf{v}_1$
 - So, normalizing B^kx approximates v₁.
- The above approximations are with respect to the fact that σ₁ is significantly larger than σ₂. What if this is not true?

Theorem

Let A be an $n \times d$ matrix and **x** a unit length vector in \mathbb{R}^d with $\mathbf{x}_t \mathbf{v}_1 \ge \delta$, where $\delta > 0$. Let V be the space spanned by the right singular vectors of A corresponding to singular values greater than $(1 - \epsilon)\sigma_1$. Let **w** be the unit vector after $k = \frac{\ln 1/\epsilon\delta}{2\epsilon}$ iterations of the power method, namely $\mathbf{w} = \frac{(A^T A)^k \mathbf{x}}{||(A^T A)^k \mathbf{x}||}$. Then **w** has a component of at most ϵ perpendicular to V.

End

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

・ロト ・回ト ・ヨト ・ヨト

Ξ