COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Best Fit Subspaces and Singular Value Decomposition (SVD)

Best Fit Subspaces and SVD

Best fit line

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^{d}, find a best fit line through the origin for the given n points.

- Question: How do we define best fit line?

Best Fit Subspaces and SVD
 \section*{Best fit line}

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^{d}, find a best fit line through the origin for the given n points.

- Question: How do we define best fit line?
- A line that minimises the sum of squared distance of the n points to the line.

Best Fit Subspaces and SVD

Best fit line

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^{d}, find a best fit line through the origin for the given n points.

- Question: How do we define best fit line?
- A line that minimises the sum of squared distance of the n points to the line.
- Claim: The best fit line maximises the sum of projections squared of the n points to the line.

Best Fit Subspaces and SVD
 Best fit line

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^{d}, find a best fit line through the origin for the given n points.

- The best fit line through the origin is one that minimises the sum of squared distance of the n points to the line.
- Let \mathbf{v} denote a unit vector ($d \times 1$ matrix) in the direction of the best fit line.
- Claim: The sum of squared lengths of projections of the points onto \mathbf{v} is $\|A \mathbf{v}\|^{2}$.

Best Fit Subspaces and SVD
 Best fit line

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^{d}, find a best fit line through the origin for the given n points.

- The best fit line through the origin is one that minimises the sum of squared distance of the n points to the line.
- Let \mathbf{v} denote a unit vector $(d \times 1$ matrix $)$ in the direction of the best fit line.
- Claim: The sum of squared lengths of projections of the points onto \mathbf{v} is $\|A \mathbf{v}\|^{2}$.
- So, the best fit line is defined by unit vector \mathbf{v} that maximises $\|A \mathbf{v}\|$.
- This is the first singular vector of the matrix A. So, the first singular vector is defined as:

$$
\mathbf{v}_{\mathbf{1}}=\arg \max _{\|\mathbf{v}\|=1}\|A \mathbf{v}\|
$$

Best Fit Subspaces and SVD

 Best fit line

 Best fit line}
Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^{d}, find a best fit line through the origin for the given n points.

- The best fit line through the origin is one that minimises the sum of squared distance of the n points to the line.
- Let \mathbf{v} denote a unit vector ($d \times 1$ matrix) in the direction of the best fit line.
- Claim: The sum of squared lengths of projections of the points onto \mathbf{v} is $\|A \mathbf{v}\|^{2}$.
- So, the best fit line is defined by unit vector \mathbf{v} that maximises $\|A \mathbf{v}\|$.
- This is the first singular vector of the matrix A. So, the first singular vector is defined as:

$$
\mathbf{v}_{\mathbf{1}}=\arg \max _{\|\mathbf{v}\|=1}\|A \mathbf{v}\|
$$

- The value $\sigma_{1}=\left\|A \mathbf{v}_{\mathbf{1}}\right\|$ is called the first singular value of A.

Best Fit Subspaces and SVD
 Best fit line

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^{d}, find a best fit line through the origin for the given n points.

- The first singular vector is defined as:

$$
\mathbf{v}_{\mathbf{1}}=\arg \max _{\|\mathbf{v}\|=1}\|A \mathbf{v}\|
$$

- The value $\sigma_{1}=\left\|A \mathbf{v}_{\mathbf{1}}\right\|$ is called the first singular value of A.
- So, σ_{1}^{2} is equal to the sum of squared length of projections.
- Note that if all the data points are "close" to a line through the origin, then the first singular vector gives such a line.
- Question: if the data points are close to a plane (and in general close to a k-dimensional subspace), then how do we find such a plane?

Best Fit Subspaces and SVD
 Best fit line

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^{d}, find a best fit plane through the origin for the given n points.

- Let $\mathbf{v}_{\mathbf{1}}$ denote the first singular vector of A.
- Idea: Find a unit vector \mathbf{v} perpendicular to $\mathbf{v}_{\mathbf{1}}$ that maximises $\|A \mathbf{v}\|$. Output the plane through the origin defined by vectors $\mathbf{v}_{\mathbf{1}}$ and \mathbf{v}.
- Claim: The plane defined above indeed maximises sum of squared distances of all the points.
- The second singular vector is defined as:

$$
\mathbf{v}_{\mathbf{2}}=\underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{\mathbf{1}}}{\arg \max }\|A \mathbf{v}\|
$$

- The value $\sigma_{2}=\left\|A \mathbf{v}_{\mathbf{2}}\right\|$ is called the second singular value of A.

Best Fit Subspaces and SVD
 Best fit plane

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^{d}, find a best fit plane through the origin for the given n points.

- Let $\mathbf{v}_{\mathbf{1}}$ denote the first singular vector of A.
- The second singular vector is defined as:

$$
\mathbf{v}_{\mathbf{2}}=\underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{\mathbf{1}}}{\arg \max }\|A \mathbf{v}\|
$$

- The value $\sigma_{2}=\left\|A \mathbf{v}_{\mathbf{2}}\right\|$ is called the second singular value of A.

Theorem

For any matrix A, the plane spanned by $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ is the best fit plane.

Best Fit Subspaces and SVD
 Best fit plane

- The first singular vector is defined as: $\mathbf{v}_{\mathbf{1}}=\arg \max _{| | \mathbf{v} \|=1}\|A \mathbf{v}\|$.
- The second singular vector is defined as:

$$
\mathbf{v}_{\mathbf{2}}=\arg \max _{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{\mathbf{1}}}\|A \mathbf{v}\| .
$$

Theorem

For any matrix A, the plane spanned by $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ is the best fit plane.

Proof sketch

- Let W denote the best fit plane for A.
- Claim 1: There exists an orthonormal basis $\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{2}\right)$ of W such that $\mathbf{w}_{\mathbf{2}}$ is perpendicular to $\mathbf{v}_{\mathbf{1}}$.
- Claim 2: $\left\|A \mathbf{w}_{\mathbf{1}}\right\|^{2} \leq\left\|A \mathbf{v}_{\mathbf{1}}\right\|^{2}$.
- Claim 3: $\left\|A \mathbf{w}_{\mathbf{2}}\right\|^{2} \leq\left\|A \mathbf{v}_{\mathbf{2}}\right\|^{2}$.
- This gives $\left\|A \mathbf{w}_{\mathbf{1}}\right\|^{2}+\left\|A \mathbf{w}_{\mathbf{2}}\right\|^{2} \leq\left\|A \mathbf{v}_{\mathbf{1}}\right\|^{2}+\left\|A \mathbf{v}_{\mathbf{2}}\right\|^{2}$.

Best Fit Subspaces and SVD

Best fit subspace

- The first singular vector and first singular value is defined as:

$$
\mathbf{v}_{\mathbf{1}}=\underset{\|\mathbf{v}\|=1}{\arg \max }\|A \mathbf{v}\| \quad \text { and } \quad \sigma_{1}=\left\|A \mathbf{v}_{\mathbf{1}}\right\|
$$

- The second singular vector and second singular value is defined as:

$$
\mathbf{v}_{\mathbf{2}}=\underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{\mathbf{1}}}{\arg \max }\|A \mathbf{v}\| \quad \text { and } \quad \sigma_{2}=\left\|A \mathbf{v}_{\mathbf{2}}\right\| .
$$

- The third singular vector and third singular value is defined as:

$$
\mathbf{v}_{\mathbf{3}}=\underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}}{\arg \max }\|A \mathbf{v}\| \quad \text { and } \quad \sigma_{3}=\left\|A \mathbf{v}_{\mathbf{3}}\right\|
$$

- ...and so on.
- Let r be the smallest positive integer such that: $\max _{| | \mathbf{v} \|=1, \mathbf{v} \perp \mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{r}}}\|A \mathbf{v}\|=0$. Then A has r singular vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$.

Theorem

Let A be any $n \times d$ matrix with r singular vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$. For $1 \leq k \leq r$, let V_{k} be the subspace spanned by $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$. For each k, V_{k} is the best-fit k-dimensional subspace for A.

Best Fit Subspaces and SVD

Best fit subspace

- The first singular vector and first singular value is defined as:

$$
\mathbf{v}_{\mathbf{1}}=\underset{\|\mathbf{v}\|=1}{\arg \max }\|A \mathbf{v}\| \quad \text { and } \quad \sigma_{1}=\left\|A \mathbf{v}_{\mathbf{1}}\right\|
$$

- The second singular vector and second singular value is defined as:

$$
\mathbf{v}_{\mathbf{2}}=\underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{\mathbf{1}}}{\arg \max }\|A \mathbf{v}\| \quad \text { and } \quad \sigma_{2}=\left\|A \mathbf{v}_{\mathbf{2}}\right\|
$$

- The third singular vector and third singular value is defined as:

$$
\mathbf{v}_{\mathbf{3}}=\underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}}{\arg \max }\|A \mathbf{v}\| \quad \text { and } \quad \sigma_{3}=\left\|A \mathbf{v}_{\mathbf{3}}\right\|
$$

- ...and so on.
- Let r be the smallest positive integer such that: $\max _{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{r}}}\|A \mathbf{v}\|=0$. Then A has r singular vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$.
- The vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are more specifically called the right singular vectors.

Best Fit Subspaces and SVD

Best fit subspace

- The first singular vector and first singular value is defined as:

$$
\mathbf{v}_{\mathbf{1}}=\underset{\|\mathbf{v}\|=1}{\arg \max }\|A \mathbf{v}\| \quad \text { and } \quad \sigma_{1}=\left\|A \mathbf{v}_{\mathbf{1}}\right\|
$$

- The second singular vector and second singular value is defined as:

$$
\mathbf{v}_{\mathbf{2}}=\underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{\mathbf{1}}}{\arg \max }\|A \mathbf{v}\| \quad \text { and } \quad \sigma_{2}=\left\|A \mathbf{v}_{\mathbf{2}}\right\| .
$$

- The third singular vector and third singular value is defined as:

$$
\mathbf{v}_{\mathbf{3}}=\underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}}{\arg \max }\|A \mathbf{v}\| \quad \text { and } \quad \sigma_{3}=\left\|A \mathbf{v}_{\mathbf{3}}\right\| .
$$

- ...and so on.
- Let r be the smallest positive integer such that: $\max _{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{r}}}\|A \mathbf{v}\|=0$. Then A has r singular vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$.
- The vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are more specifically called the right singular vectors.
- For any singular vector $\mathbf{v}_{\mathbf{i}}, \sigma_{i}=\left\|A \mathbf{v}_{\mathbf{i}}\right\|$ may be interpreted as the component of the matrix A along $\mathbf{v}_{\mathbf{i}}$.
- Given this interpretation, the "the components should add up to give the whole content of $A^{\prime \prime}$.

Best Fit Subspaces and SVD

Frobenius Norm

- Let r be the smallest positive integer such that:
$\max _{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}}\|A \mathbf{v}\|=0$. Then A has r singular vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$.
- The vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are more specifically called the right singular vectors.
- For any singular vector $\mathbf{v}_{\mathbf{i}}, \sigma_{i}=\left\|A \mathbf{v}_{\mathbf{i}}\right\|$ may be interpreted as the component of the matrix A along $\mathbf{v}_{\mathbf{i}}$.
- Given this interpretation, the "the components should add up to give the whole content of $A^{\prime \prime}$.
- For any row a_{j} in the matrix A, we can write $\left\|a_{j}\right\|^{2}=\sum_{i=1}^{r}\left(a_{j} \cdot \mathbf{v}_{\mathbf{i}}\right)^{2}$. This further gives:

$$
\sum_{j=1}^{n}\left\|a_{j}\right\|^{2}=\sum_{j=1}^{n} \sum_{i=1}^{r}\left(a_{j} \cdot \mathbf{v}_{\mathbf{i}}\right)^{2}=\sum_{i=1}^{r}\left\|A \mathbf{v}_{\mathbf{i}}\right\|^{2}=\sum_{i=1}^{r} \sigma_{i}^{2}
$$

Best Fit Subspaces and SVD

Frobenius Norm

- Let r be the smallest positive integer such that:
$\max _{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}}\|A \mathbf{v}\|=0$. Then A has r singular vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$.
- The vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are more specifically called the right singular vectors.
- For any singular vector $\mathbf{v}_{\mathbf{i}}, \sigma_{i}=\left\|A \mathbf{v}_{\mathbf{i}}\right\|$ may be interpreted as the component of the matrix A along $\mathbf{v}_{\mathbf{i}}$.
- Given this interpretation, the "the components should add up to give the whole content of $A^{\prime \prime}$.
- For any row a_{j} in the matrix A, we can write $\left\|a_{j}\right\|^{2}=\sum_{i=1}^{r}\left(a_{j} \cdot \mathbf{v}_{\mathbf{i}}\right)^{2}$. This further gives:

$$
\sum_{j=1}^{n}\left\|a_{j}\right\|^{2}=\sum_{j=1}^{n} \sum_{i=1}^{r}\left(a_{j} \cdot \mathbf{v}_{\mathbf{i}}\right)^{2}=\sum_{i=1}^{r}\left\|A \mathbf{v}_{\mathbf{i}}\right\|^{2}=\sum_{i=1}^{r} \sigma_{i}^{2}
$$

- The LHS of the above equation may be interpreted as "content of the matrix" defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given $n \times d$ matrix A, denoted by $\|A\|_{F}$, is defined as: $\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{d} A_{i, j}^{2}}$.

Best Fit Subspaces and SVD

Frobenius Norm

- For any row a_{j} in the matrix A, we can write $\left\|a_{j}\right\|^{2}=\sum_{i=1}^{r}\left(a_{j} \cdot \mathbf{v}_{\mathbf{i}}\right)^{2}$. This further gives:

$$
\sum_{j=1}^{n}\left\|a_{j}\right\|^{2}=\sum_{j=1}^{n} \sum_{i=1}^{r}\left(a_{j} \cdot \mathbf{v}_{\mathbf{i}}\right)^{2}=\sum_{i=1}^{r}\left\|A \mathbf{v}_{\mathbf{i}}\right\|^{2}=\sum_{i=1}^{r} \sigma_{i}^{2}
$$

- The LHS of the above equation may be interpreted as "content of the matrix" defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given $n \times d$ matrix A, denoted by $\|A\|_{F}$, is defined as: $\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{d} A_{i, j}^{2}}$.

Theorem

For any matrix A, the sum of squares of the right singular values equals the square of the Frobenius norm of the matrix.

Singular Value Decomposition (SVD)

Left singular vectors

- Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ be the right singular vectors and $\sigma_{1}, \ldots, \sigma_{r}$ be the corresponding singular values of matrix A.
- The left singular vectors are defined as $\mathbf{u}_{i}=\frac{1}{\sigma_{i}} A \mathbf{v}_{i}$.
- $\sigma_{i} \mathbf{u}_{i}$ may be interpreted as a vector whose components are the projections of the rows of A onto \mathbf{v}_{i}.

Singular Value Decomposition (SVD)

Left singular vectors

- Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ be the right singular vectors and $\sigma_{1}, \ldots, \sigma_{r}$ be the corresponding eigenvalues of matrix A.
- The left singular vectors are defined as $\mathbf{u}_{i}=\frac{1}{\sigma_{i}} A \mathbf{v}_{i}$.
- $\sigma_{i} \mathbf{u}_{i}$ may be interpreted as a vector whose components are the projections of the rows of A onto \mathbf{v}_{i}.
- $\sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ is a rank one matrix whose rows can be interpreted as component of rows of A along \mathbf{v}_{i}.
- Given this, the following decomposition of A into rank one matrices should make sense (we will prove this): $A=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$.

Theorem

Let A be any $n \times d$ matrix with right singular vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$, left-singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, and corresponding singular values $\sigma_{1}, \ldots, \sigma_{r}$. Then $A=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$.

Singular Value Decomposition (SVD)

Theorem

Let A be any $n \times d$ matrix with right singular vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$, left-singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, and corresponding singular values $\sigma_{1}, \ldots, \sigma_{r}$. Then $A=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$.

Proof sketch

- Lemma: Matrices A and B are identical iff for all vectors $\mathbf{v}, A \mathbf{v}=B \mathbf{v}$.
- Let $B=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$.
- For any $j, A \mathbf{v}_{j}=\sigma_{j} \mathbf{u}_{j}$ from the definition of u_{j}.
- $B \mathbf{v}_{j}=\left(\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}\right) \mathbf{v}_{j}=\sigma_{j} \mathbf{u}_{j}$ from orthonormality.
- Fact: Any vector \mathbf{v} can be written as a linear combination of right eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ and a vector perpendicular to $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$.

Singular Value Decomposition (SVD)

Theorem

Let A be any $n \times d$ matrix with right singular vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$, left-singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, and corresponding singular values $\sigma_{1}, \ldots, \sigma_{r}$. Then $A=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$.

- The decomposition $A=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ is called the Singular Value Decomposition (or SVD in short).
- In matrix notation, we can write $A=U D V^{\top}$ where:
- U is a $n \times r$ matrix where the $i^{t h}$ column is \mathbf{u}_{i}.
- D is a $r \times r$ diagonal matrix with the $i^{t h}$ diagonal element σ_{i}.
- V is a $d \times r$ matrix where the $i^{\text {th }}$ column is \mathbf{v}_{i}.
- Question: How do we compute the SVD?
- Question: What are the applications of SVD?

Singular Value Decomposition (SVD)

Best rank-k approximation

- Let $A=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ be the SVD of an $n \times d$ matrix A.
- For $k \in\{1, \ldots, r\}$ let

$$
A_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \quad \text { (i.e., sum truncated to first } k \text { elements) }
$$

- Claim 1: A_{k} has rank k.
- Claim 2: The rows of A_{k} are the projections of the rows of A onto the subspace V_{k} spanned by the first k singular vectors of A.
- We will prove that A_{k} is the best rank k approximation to A where the error is measured in terms of the Frobenius norm.

Theorem

For any matrix B with rank at most k :

$$
\left\|A-A_{k}\right\|_{F} \leq\|A-B\|_{F} .
$$

Singular Value Decomposition (SVD)

Best rank-k approximation

Theorem

For any matrix B with rank at most k :

$$
\left\|A-A_{k}\right\|_{F} \leq\|A-B\|_{F} .
$$

- The above theorem tells us that A_{k} is a good approximation for A (w.r.t. Frobenius norm).
- The approximation A_{k} also is good for computation of product with any vector \mathbf{x} with $\|\mathbf{x}\| \leq 1$.
- Computing $A \mathrm{x}$ would cost $O(n d)$ multiplications.
- However, computing $A_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}^{\top}$ only costs $O(k d+n k)$ multiplications.
- Question: Is A_{k} best rank- k approximation to A w.r.t. the computation $A \mathbf{x}$ for an arbitrary \mathbf{x} with $\|\mathbf{x}\| \leq 1$?
- We want a rank- k matrix B such that $\max _{\|x\|}|\leq 1| \mid(A-B) \mathbf{x} \|$ is minimized.

Singular Value Decomposition (SVD)

Best rank-k approximation

Theorem

For any matrix B with rank at most k :

$$
\left\|A-A_{k}\right\|_{F} \leq\|A-B\|_{F} .
$$

- The above theorem tells us that A_{k} is a good approximation for A (w.r.t. Frobenius norm).
- The approximation A_{k} also is good for computation of product with any vector \mathbf{x} with $\|\mathbf{x}\| \leq 1$.
- Computing $A \mathrm{x}$ would cost $O(n d)$ multiplications.
- However, computing $A_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}^{\top}$ only costs $O(k d+n k)$ multiplications.
- Question: Is A_{k} best rank- k approximation to A w.r.t. the computation $A \mathbf{x}$ for an arbitrary \mathbf{x} with $\|\mathbf{x}\| \leq 1$?
- We want a rank- k matrix B such that $\max _{\|\mathrm{x}\| \leq 1}\|(A-B) \mathbf{x}\|$ is minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by $\|A\|_{2}$, is defined as: $\|A\|_{2}=\max _{\|\mathbf{x}\| \leq 1}\|A \mathbf{x}\|$.

Singular Value Decomposition (SVD)

Best rank-k approximation

- The approximation A_{k} also is good for computation of product with any vector \mathbf{x} with $\|\mathbf{x}\| \leq 1$.
- Computing $A \mathbf{x}$ would cost $O(n d)$ multiplications.
- However, computing $A_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}^{T}$ only costs $O(k d+n k)$ multiplications.
- Question: Is A_{k} best rank-k approximation to A w.r.t. the computation $A \mathbf{x}$ for an arbitrary \mathbf{x} with $\|\mathbf{x}\| \leq 1$?
- We want a rank- k matrix B such that $\max _{\|\mathbf{x}\| \leq 1}\|(A-B) \mathbf{x}\|$ is minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by $\|A\|_{2}$, is defined as: $\|A\|_{2}=\max _{\|\mathbf{x}\|}|\leq 1| \mid A \mathbf{x} \|$.

- Claim: $\|A\|_{2}=\sigma_{1}$.

Singular Value Decomposition (SVD)

Best rank-k approximation

- The approximation A_{k} also is good for computation of product with any vector \mathbf{x} with $\|\mathbf{x}\| \leq 1$.
- Computing $A \mathbf{x}$ would cost $O(n d)$ multiplications.
- However, computing $A_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}^{T}$ only costs $O(k d+n k)$ multiplications.
- Question: Is A_{k} best rank-k approximation to A w.r.t. the computation $A \mathbf{x}$ for an arbitrary \mathbf{x} with $\|\mathbf{x}\| \leq 1$?
- We want a rank- k matrix B such that $\max _{\|\mathbf{x}\| \leq 1}\|(A-B) \mathbf{x}\|$ is minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by $\|A\|_{2}$, is defined as: $\|A\|_{2}=\max _{\|\mathrm{x}\|}|\leq 1| \mid A \mathbf{x} \|$.

- Claim: $\|A\|_{2}=\sigma_{1}$.
- The question can now be rephrased as: Is A_{k} the best rank-k approximation to A w.r.t. the spectral norm?

Singular Value Decomposition (SVD)

Best rank-k approximation

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by $\|A\|_{2}$, is defined as: $\|A\|_{2}=\max _{\|\mathbf{x}\|}|\leq 1| \mid A \mathbf{x} \|$.

- Question: Is A_{k} the best rank- k approximation to A w.r.t. the spectral norm?

Theorem

Let A be any $n \times d$ matrix. For any matrix B of rank at most k :

$$
\left\|A-A_{k}\right\|_{2} \leq\|A-B\|_{2} .
$$

- First, we show that the left singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ are pairwise orthogonal.

Singular Value Decomposition (SVD)

Best rank-k approximation

Theorem

The left singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ are pairwise orthogonal.

Singular Value Decomposition (SVD)

Best rank-k approximation

Theorem

Let A be any $n \times d$ matrix. For any matrix B of rank at most k :

$$
\left\|A-A_{k}\right\|_{2} \leq\|A-B\|_{2} .
$$

- First, we show that the left singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ are pairwise orthogonal.

Theorem

The left singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ are pairwise orthogonal.

- We will also need the following theorem.

Theorem

$\left\|A-A_{k}\right\|_{2}^{2}=\sigma_{k+1}^{2}$.

Singular Value Decomposition (SVD)

Best rank-k approximation

Theorem

Let A be any $n \times d$ matrix. For any matrix B of rank at most k :

$$
\left\|A-A_{k}\right\|_{2} \leq\|A-B\|_{2} .
$$

Theorem

The left singular vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ are pairwise orthogonal.

Theorem

$\left\|A-A_{k}\right\|_{2}^{2}=\sigma_{k+1}^{2}$.

- Finally, we show the following:

Theorem

Let A be an $n \times d$ matrix. For any matrix B of rank at most k :

$$
\left\|A-A_{k}\right\|_{2} \leq\|A-B\|_{2}
$$

Singular Value Decomposition (SVD)

- Exercise: Show that u_{i} 's are the right singular vectors for the matrix A^{T}.

End

