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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n x d matrix A, where we interpret the rows of the matrix as
points in RY, find a best fit line through the origin for the given n
points.

@ Question: How do we define best fit line?
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n x d matrix A, where we interpret the rows of the matrix as
points in RY, find a best fit line through the origin for the given n
points.

@ Question: How do we define best fit line?
o A line that minimises the sum of squared distance of the n points
to the line.
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Best Fit Subspaces and SVD

Best fit line

Problem
Given an n x d matrix A, where we interpret the rows of the matrix as
points in R?, find a best fit line through the origin for the given n
points.

@ Question: How do we define best fit line?
o A line that minimises the sum of squared distance of the n points
to the line.
o Claim: The best fit line maximises the sum of projections squared
of the n points to the line.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n x d matrix A, where we interpret the rows of the matrix as
points in RY, find a best fit line through the origin for the given n
points.

@ The best fit line through the origin is one that minimises the sum
of squared distance of the n points to the line.

o Let v denote a unit vector (d x 1 matrix) in the direction of the
best fit line.

o Claim: The sum of squared lengths of projections of the points
onto v is ||Av]|[2.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n x d matrix A, where we interpret the rows of the matrix as
points in R, find a best fit line through the origin for the given n
points.

@ The best fit line through the origin is one that minimises the sum
of squared distance of the n points to the line.

o Let v denote a unit vector (d x 1 matrix) in the direction of the
best fit line.

o Claim: The sum of squared lengths of projections of the points
onto v is ||Av|[2.

@ So, the best fit line is defined by unit vector v that maximises
[[Av]].

@ This is the first singular vector of the matrix A. So, the first
singular vector is defined as:

v = arg max ||Av||
[Iv[|=1
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Best Fit Subspaces and SVD

Best fit line

Given an n x d matrix A, where we interpret the rows of the matrix as
points in RY, find a best fit line through the origin for the given n
points.

@ The best fit line through the origin is one that minimises the sum
of squared distance of the n points to the line.

o Let v denote a unit vector (d x 1 matrix) in the direction of the
best fit line.

o Claim: The sum of squared lengths of projections of the points
onto v is ||Av||?.

@ So, the best fit line is defined by unit vector v that maximises
[ Av]]

@ This is the first singular vector of the matrix A. So, the first
singular vector is defined as:

vi = arg max ||Av]|
[Ivll=1

@ The value o1 = ||Avy|| is called the first singular value of A.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n x d matrix A, where we interpret the rows of the matrix as
points in RY, find a best fit line through the origin for the given n
points.

o The first singular vector is defined as:

vi = arg max ||Av|
[lvil=1

()

The value o1 = ||Avy|| is called the first singular value of A.

So, Jf is equal to the sum of squared length of projections.
Note that if all the data points are “close” to a line through the
origin, then the first singular vector gives such a line.

Question: if the data points are close to a plane (and in general
close to a k-dimensional subspace), then how do we find such a
plane?

e ©
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n x d matrix A, where we interpret the rows of the matrix as
points in RY, find a best fit plane through the origin for the given n
points.

o Let vy denote the first singular vector of A.

o Idea: Find a unit vector v perpendicular to v; that maximises
[|Av||. Output the plane through the origin defined by vectors vq
and v.

o Claim: The plane defined above indeed maximises sum of squared
distances of all the points.

@ The second singular vector is defined as:

vp = argmax ||Av||.
[IvII=1,vLvs

@ The value 0y = ||Avy|| is called the second singular value of A.
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Best Fit Subspaces and SVD
Best fit plane

Problem

Given an n x d matrix A, where we interpret the rows of the matrix as
points in RY, find a best fit plane through the origin for the given n
points.

o Let v; denote the first singular vector of A.
@ The second singular vector is defined as:

vy = argmax ||Av||.
[IvI[=LvLvy

@ The value 03 = ||Avy|| is called the second singular value of A.

For any matrix A, the plane spanned by vy and vj is the best fit plane. I
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Best Fit Subspaces and SVD
Best fit plane

o The first singular vector is defined as: vi = arg maxy=1 ||Av||.
@ The second singular vector is defined as:
V2 = argmaxy|=1y Ly, ||Av]].

For any matrix A, the plane spanned by vy and vy is the best fit plane. I

Proof sketch

o Let W denote the best fit plane for A.

o Claim 1: There exists an orthonormal basis (wy,w) of W such
that wy is perpendicular to vy.

o Claim 2: [|Awq|[? < [|Avq]]%.

o Claim 3: ||Awa||? < [|Ava]|?.

o This gives ||Awq||2 + ||Awg||2 < ||Avq|[? + ||Ava]?. O
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Best Fit Subspaces and SVD

Best fit subspace

@ The first singular vector and first singular value is defined as:

vi = argmax||Av|| and o1 = ||Avq]|
[Iv[l=1

o The second singular vector and second singular value is defined as:

vy = argmax ||Av|| and o2 = ||Avy]].
[lv[[=1,vLlv;

@ The third singular vector and third singular value is defined as:

vz = argmax ||Av|| and o3 =|Avs]|.
[IvII=1vLvy,v2

o ...and so on.
o Let r be the smallest positive integer such that:
MaX|jy||=1v Lvy,..v |[AV|| = 0. Then A has r singular vectors vy, ..., v,.

Let A be any n x d matrix with r singular vectors v, ...,v,. For
1 < k <r, let Vi be the subspace spanned by vy, ...,vx. For each k, Vj is
the best-fit k-dimensional subspace for A.
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Best Fit Subspaces and SVD

Best fit subspace

@ The first singular vector and first singular value is defined as:
vi = argmax||Av|| and o1 = ||Avi]]
[lv]|=1

@ The second singular vector and second singular value is defined as:

vp = argmax ||Av|| and o2 = ||Avy]].
[IvI=1,vLvy

@ The third singular vector and third singular value is defined as:

v = argmax [|Av|]| and o3 =]|Avs||.
[lv]|=1,vLvy,v2

...and so on.

Let r be the smallest positive integer such that:

MaX||y||=1,vLvy,...v, ||AV]| = 0. Then A has r singular vectors vy, ..., v.
@ The vectors vy, ..., v, are more specifically called the right singular
vectors.

o ©

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Best

Fit Subspaces and SVD

Best fit subspace

The first singular vector and first singular value is defined as:

vi = argmax||Av|| and o1 = ||Avq]|
[Iv]|=1

The second singular vector and second singular value is defined as:

vy = argmax [|Av|| and o2 =||Avy||.
[Iv[|=1,vLvy

The third singular vector and third singular value is defined as:

vi= argmax [||Av|| and o3 =|Avs|.
|lv]|=1,vLvy,vo

...and so on.

Let r be the smallest positive integer such that:

MaX||y||=1,vLvy,...v, ||AV|| = 0. Then A has r singular vectors vy, ..., vy.
The vectors vy, ..., v, are more specifically called the right singular
vectors.

For any singular vector v;, o; = ||Avi|| may be interpreted as the
component of the matrix A along v;.

Given this interpretation, the “the components should add up to give
the whole content of A”.
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Best Fit Subspaces and SVD

Frobenius Norm

@ Let r be the smallest positive integer such that:

MaX||y||=1vLvy,....w |[AV|[ = 0. Then A has r singular vectors vy, ..., v.
o The vectors vy, ..., v, are more specifically called the right singular
vectors.
o For any singular vector v;, o; = ||Av;|| may be interpreted as the

component of the matrix A along v;.

o Given this interpretation, the “the components should add up to give
the whole content of A”.

o For any row a; in the matrix A, we can write ||a;||> = >/, (a; - vi)?.
This further gives:

n r r
> llall? = ZZ (3 -wi)® =D _llAwlP =D o7,
j=1 i=1 i=1

j=1i=1
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Best Fit Subspaces and SVD

Frobenius Norm

o Let r be the smallest positive integer such that:
MaX|jy||=1v Lv;,...v ||[AV]| = 0. Then A has r singular vectors vy, ..., ;.

@ The vectors vy, ..., v, are more specifically called the right singular
vectors.

o For any singular vector v;, o; = ||Avj|| may be interpreted as the
component of the matrix A along v;.

o Given this interpretation, the “the components should add up to give
the whole content of A”.

o For any row a; in the matrix A, we can write ||a;
This further gives:

n n r P .
PIDIEED BH BRI SILICED B
= i=1 i=1

j=1i=1

17 =i (3 - wi)*.

o The LHS of the above equation may be interpreted as “content of the
matrix’ defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given n x d matrix A, denoted by ||A||g, is
. d
defined as: ||Al|r = /311 271 A7)
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Best Fit Subspaces and SVD
Frobenius Norm

o For any row a; in the matrix A, we can write ||a;||> = >/, (a; - vi)2.
This further gives:

n n r r r
DollallP =Y (e v =D llAvl? =)o
Jj=1 i=1 i=1

j=1i=1

@ The LHS of the above equation may be interpreted as “content of the
matrix' defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given n x d matrix A, denoted by ||A||f, is

defined as: ||A||lF = /D07y Yoimy A

For any matrix A, the sum of squares of the right singular values equals
the square of the Frobenius norm of the matrix.
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Singular Value Decomposition (SVD)

Left singular vectors

o Let vy,...,v, be the right singular vectors and o1, ..., 5, be the
corresponding singular values of matrix A.

@ The left singular vectors are defined as u; = U%Av,-.

@ oju; may be interpreted as a vector whose components are the

projections of the rows of A onto v;.
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Singular Value Decomposition (SVD)

Left singular vectors

o Let vy,...,v, be the right singular vectors and o1, ..., 5, be the
corresponding eigenvalues of matrix A.

@ The left singular vectors are defined as u; = U%Av,-.

@ oju; may be interpreted as a vector whose components are the
projections of the rows of A onto v;.

° a,-u,-v,.T is a rank one matrix whose rows can be interpreted as
component of rows of A along v;.

@ Given this, the following decomposition of A into rank one matrices
should make sense (we will prove this): A= 3"'_, o;uv/.

Let A be any n x d matrix with right singular vectors vy, ..., v,
left-singular vectors uy, ..., u,, and corresponding singular values o1, ..., 0.
Then A=>"I_ o],
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Singular Value Decomposition (SVD)

Theorem

Let A be any n x d matrix with right singular vectors vi, ...,V,,

left-singular vectors uy, ...,u,, and corresponding singular values o1, ..., o,.
_ N\ e
Then A=>"[_;oiujv; .

Proof sketch

@ Lemma: Matrices A and B are identical iff for all vectors v, Av = Bv.

Let B = E;:l O','U,'V’-T.

o For any j, Av; = oju; from the definition of u;.

o Bv; = (Zle J,-u,-v,-T) v; = oju; from orthonormality.

@ Fact: Any vector v can be written as a linear combination of right
eigenvectors vy, ..., v, and a vector perpendicular to vy, ..., V,. O

y

| \,
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Singular Value Decomposition (SVD)

Let A be any n x d matrix with right singular vectors vi, ..., Vv,
left-singular vectors ugy, ..., u,, and corresponding singular values
01,y 0r. Then A= Y"1 ojuv].

o The decomposition A= >""_, oju;v] is called the Singular Value
Decomposition (or SVD in short).
@ In matrix notation, we can write A = UDV'T where:
o Uis a n x r matrix where the it" column is u;.
o Dis a r x r diagonal matrix with the i*" diagonal element o;.
o Vs a d x r matrix where the it" column is v;.
@ Question: How do we compute the SVD?
@ Question: What are the applications of SVD?
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Singular Value Decomposition (SVD)

Best rank-k approximation

Let A=, ojujv] be the SVD of an n x d matrix A.
For k € {1,...,r} let

e ©

k
Ax = Z oiuv]  (ie., sum truncated to first k elements)
i=1

Claim 1: Ag has rank k.

Claim 2: The rows of Ay are the projections of the rows of A onto the
subspace Vj spanned by the first k singular vectors of A.

We will prove that Ay is the best rank k approximation to A where
the error is measured in terms of the Frobenius norm.

e ©

(]

For any matrix B with rank at most k:

[|[A—Allr < ||A— Bl|F.
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Singular Value Decomposition (SVD)

Best rank-k approximation

For any matrix B with rank at most k:

[|[A—Allr < ||A— BllF.

@ The above theorem tells us that Ay is a good approximation for A
(w.r.t. Frobenius norm).
@ The approximation Ay also is good for computation of product with
any vector x with ||x|| < 1.
o Computing Ax would cost O(nd) multiplications.
o However, computing Ax = Zf-;l oiu;vT only costs O(kd + nk)
multiplications.
o Question: Is Ay best rank-k approximation to A w.r.t. the
computation Ax for an arbitrary x with ||x|| < 17
o We want a rank-k matrix B such that max <1 ||(A — B)x|| is
minimized.
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Singular Value Decomposition (SVD)

Best rank-k approximation

For any matrix B with rank at most k:

[[A— Akl < [|A— Bl

o The above theorem tells us that Ay is a good approximation for A
(w.r.t. Frobenius norm).
@ The approximation Ay also is good for computation of product with
any vector x with ||x|| < 1.
o Computing Ax would cost O(nd) multiplications.
o However, computing Ay = Zﬁ;l aiuvT only costs O(kd + nk)
multiplications.
o Question: Is Ay best rank-k approximation to A w.r.t. the
computation Ax for an arbitrary x with ||x|| < 17
o We want a rank-k matrix B such that max|x <1 |[(A— B)x|| is
minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by ||A||2, is defined
as: ||AH2 = maxHxHSl ||AXH
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Singular Value Decomposition (SVD)

Best rank-k approximation

o The approximation Ay also is good for computation of product with
any vector x with ||x|| < 1.
o Computing Ax would cost O(nd) multiplications.
o However, computing Ay = Zf-(:l ouv’ only costs O(kd + nk)
multiplications.
@ Question: Is Ay best rank-k approximation to A w.r.t. the
computation Ax for an arbitrary x with ||x|| < 17
o We want a rank-k matrix B such that max <1 ||(A — B)x|| is
minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by ||A||2, is defined
as: ||Al]2 = max||x||<1 [|Ax||.

o Claim: ||A||2 = o1.
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Singular Value Decomposition (SVD)

Best rank-k approximation

o The approximation Ay also is good for computation of product with
any vector x with ||x|| < 1.
o Computing Ax would cost O(nd) multiplications.
o However, computing Ay = Zf-(:l ouv’ only costs O(kd + nk)
multiplications.
@ Question: Is Ay best rank-k approximation to A w.r.t. the
computation Ax for an arbitrary x with ||x|| < 17
o We want a rank-k matrix B such that max <1 ||(A — B)x|| is
minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by ||A||2, is defined
as: ||Al]2 = max||x||<1 [|Ax||.

o Claim: ||A||]2 = 01.
@ The question can now be rephrased as:
Is A the best rank-k approximation to A w.r.t. the spectral norm?
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Singular Value Decomposition (SVD)

Best rank-k approximation

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by ||A||2, is defined
as: ||Al]2 = max||x||<1 [|Ax||.

@ Question: Is Ay the best rank-k approximation to A w.r.t. the
spectral norm?

Let A be any n x d matrix. For any matrix B of rank at most k:

[|A— A2 < ||A - Bl|2.

o First, we show that the left singular vectors uy, ..., u, are pairwise
orthogonal.
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Singular Value Decomposition (SVD)

Best rank-k approximation

The left singular vectors uy, ..., u, are pairwise orthogonal. l
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Singular Value Decomposition (SVD)

Best rank-k approximation

Let A be any n x d matrix. For any matrix B of rank at most k:

[|A— Axll2 < ||A— Blla.

o First, we show that the left singular vectors ujy, ..., u, are pairwise
orthogonal.

The left singular vectors uy, ..., u, are pairwise orthogonal. I

@ We will also need the following theorem.

1A= Al = 011 I
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Singular Value Decomposition (SVD)

Best rank-k approximation

Let A be any n x d matrix. For any matrix B of rank at most k:

[|A—Adll2 < |A— B2

The left singular vectors uy, ...,u, are pairwise orthogonal. l
2_ 2
1A = Akllz = jes1- I

o Finally, we show the following:

Let A be an n x d matrix. For any matrix B of rank at most k:

[|[A— A2 < |A— B2
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Singular Value Decomposition (SVD)

o Exercise: Show that u;'s are the right singular vectors for the
matrix AT
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End
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