COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Best Fit Subspaces and Singular Value Decomposition (SVD)

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^d , find a best fit line through the origin for the given n points.

• Question: How do we define best fit line?

Problem

- Question: How do we define best fit line?
 - A line that minimises the sum of squared distance of the n points to the line.

Best Fit Subspaces and SVD Best fit line

Problem

- Question: How do we define best fit line?
 - A line that minimises the sum of squared distance of the n points to the line.
 - <u>Claim</u>: The best fit line maximises the sum of projections squared of the n points to the line.

Problem

- The best fit line through the origin is one that minimises the sum of squared distance of the *n* points to the line.
- Let \mathbf{v} denote a unit vector ($d \times 1$ matrix) in the direction of the best fit line.
- Claim: The sum of squared lengths of projections of the points onto \mathbf{v} is $||A\mathbf{v}||^2$.

Best Fit Subspaces and SVD Best fit line

Problem

- The best fit line through the origin is one that minimises the sum of squared distance of the n points to the line.
- Let v denote a unit vector (d × 1 matrix) in the direction of the best fit line.
- Claim: The sum of squared lengths of projections of the points onto \mathbf{v} is $||A\mathbf{v}||^2$.
- So, the best fit line is defined by unit vector \mathbf{v} that maximises $||A\mathbf{v}||$.
- This is the first singular vector of the matrix A. So, the first singular vector is defined as:

$$\mathbf{v_1} = \arg\max_{||\mathbf{v}||=1} ||A\mathbf{v}||$$

Best Fit Subspaces and SVD Best fit line

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^d , find a best fit line through the origin for the given n points.

- The best fit line through the origin is one that minimises the sum of squared distance of the n points to the line.
- Let v denote a unit vector (d × 1 matrix) in the direction of the best fit line.
- <u>Claim</u>: The sum of squared lengths of projections of the points onto v is ||Av||².
- So, the best fit line is defined by unit vector \mathbf{v} that maximises $||A\mathbf{v}||$.
- This is the first singular vector of the matrix A. So, the first singular vector is defined as:

$$\mathbf{v_1} = \arg\max_{||\mathbf{v}||=1} ||A\mathbf{v}||$$

• The value $\sigma_1 = ||A\mathbf{v_1}||$ is called the first singular value of A.

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^d , find a best fit line through the origin for the given n points.

The first singular vector is defined as:

$$\mathbf{v_1} = \arg\max_{||\mathbf{v}||=1} ||A\mathbf{v}||$$

- The value $\sigma_1 = ||A\mathbf{v_1}||$ is called the first singular value of A.
- So, σ_1^2 is equal to the sum of squared length of projections.
- Note that if all the data points are "close" to a line through the origin, then the first singular vector gives such a line.
- Question: if the data points are close to a plane (and in general close to a *k*-dimensional subspace), then how do we find such a plane?

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^d , find a best fit plane through the origin for the given n points.

- Let $\mathbf{v_1}$ denote the first singular vector of A.
- <u>Idea</u>: Find a unit vector v perpendicular to v₁ that maximises ||Av||. Output the plane through the origin defined by vectors v₁ and v.
- <u>Claim</u>: The plane defined above indeed maximises sum of squared distances of all the points.
- The second singular vector is defined as:

$$\mathbf{v_2} = \underset{||\mathbf{v}||=1, \mathbf{v} \perp \mathbf{v_1}}{\operatorname{arg max}} ||A\mathbf{v}||.$$

• The value $\sigma_2 = ||A\mathbf{v_2}||$ is called the second singular value of A.

Best Fit Subspaces and SVD Best fit plane

Problem

Given an $n \times d$ matrix A, where we interpret the rows of the matrix as points in \mathbb{R}^d , find a best fit plane through the origin for the given n points.

- Let $\mathbf{v_1}$ denote the first singular vector of A.
- The second singular vector is defined as:

$$\mathbf{v_2} = \underset{||\mathbf{v}||=1, \mathbf{v} \perp \mathbf{v_1}}{\operatorname{arg max}} ||A\mathbf{v}||.$$

• The value $\sigma_2 = ||A\mathbf{v_2}||$ is called the second singular value of A.

Theorem

For any matrix A, the plane spanned by $\mathbf{v_1}$ and $\mathbf{v_2}$ is the best fit plane.

Best fit plane

- The first singular vector is defined as: $\mathbf{v_1} = \arg\max_{||\mathbf{v}||=1} ||A\mathbf{v}||$.
- The second singular vector is defined as:

$$\mathbf{v_2} = \mathsf{arg}\,\mathsf{max}_{||\mathbf{v}||=1,\mathbf{v}\perp\mathbf{v_1}}\,||A\mathbf{v}||.$$

Theorem

For any matrix A, the plane spanned by $\mathbf{v_1}$ and $\mathbf{v_2}$ is the best fit plane.

Proof sketch

- Let W denote the best fit plane for A.
- Claim 1: There exists an orthonormal basis $(\mathbf{w_1}, \mathbf{w_2})$ of W such that $\mathbf{w_2}$ is perpendicular to $\mathbf{v_1}$.
- Claim 2: $||A\mathbf{w_1}||^2 \le ||A\mathbf{v_1}||^2$.
- Claim 3: $||A\mathbf{w_2}||^2 \le ||A\mathbf{v_2}||^2$.
- This gives $||A\mathbf{w_1}||^2 + ||A\mathbf{w_2}||^2 \le ||A\mathbf{v_1}||^2 + ||A\mathbf{v_2}||^2$.

Best fit subspace

The first singular vector and first singular value is defined as:

$$\mathbf{v_1} = \underset{||\mathbf{v}||=1}{\operatorname{arg max}} ||A\mathbf{v}|| \quad \text{and} \quad \sigma_1 = ||A\mathbf{v_1}||$$

• The second singular vector and second singular value is defined as:

$$\mathbf{v_2} = \underset{||\mathbf{v}||=1, \mathbf{v} \perp \mathbf{v_1}}{\arg \max} \ ||A\mathbf{v}|| \quad \text{and} \quad \sigma_2 = ||A\mathbf{v_2}||.$$

• The third singular vector and third singular value is defined as:

$$\mathbf{v_3} = \underset{||\mathbf{v}||=1, \mathbf{v} \perp \mathbf{v_1}, \mathbf{v_2}}{\operatorname{arg max}} ||A\mathbf{v}|| \quad \text{and} \quad \sigma_3 = ||A\mathbf{v_3}||.$$

- ...and so on.
- Let r be the smallest positive integer such that: $\max_{|\mathbf{v}|=1,\mathbf{v}\perp\mathbf{v}_1,...,\mathbf{v}_r}||A\mathbf{v}||=0$. Then A has r singular vectors $\mathbf{v}_1,...,\mathbf{v}_r$.

Theorem

Let A be any $n \times d$ matrix with r singular vectors $\mathbf{v_1}, ..., \mathbf{v_r}$. For $1 \le k \le r$, let V_k be the subspace spanned by $\mathbf{v_1}, ..., \mathbf{v_k}$. For each k, V_k is the best-fit k-dimensional subspace for A.

Best fit subspace

The first singular vector and first singular value is defined as:

$$\mathbf{v_1} = \underset{||\mathbf{v}||=1}{\operatorname{arg max}} ||A\mathbf{v}|| \quad \text{and} \quad \sigma_1 = ||A\mathbf{v_1}||$$

The second singular vector and second singular value is defined as:

$$\mathbf{v_2} = \underset{||\mathbf{v}||=1,\mathbf{v}\perp\mathbf{v_1}}{\operatorname{arg max}} ||A\mathbf{v}|| \quad \text{and} \quad \sigma_2 = ||A\mathbf{v_2}||.$$

The third singular vector and third singular value is defined as:

$$\mathbf{v_3} = \underset{||\mathbf{v}||=1, \mathbf{v} \perp \mathbf{v_1}, \mathbf{v_2}}{\operatorname{arg max}} ||A\mathbf{v}|| \quad \text{and} \quad \sigma_3 = ||A\mathbf{v_3}||.$$

- ...and so on.
- Let r be the smallest positive integer such that: $\max_{||\mathbf{v}||=1,\mathbf{v}\perp\mathbf{v_1},...,\mathbf{v_r}}||A\mathbf{v}||=0$. Then A has r singular vectors $\mathbf{v_1},...,\mathbf{v_r}$.
- The vectors v₁,..., v_r are more specifically called the right singular vectors.

Best fit subspace

• The first singular vector and first singular value is defined as:

$$\mathbf{v_1} = \underset{||\mathbf{v}||=1}{\operatorname{arg max}} ||A\mathbf{v}|| \quad \text{and} \quad \sigma_1 = ||A\mathbf{v_1}||$$

• The second singular vector and second singular value is defined as:

$$\mathbf{v_2} = \underset{||\mathbf{v}||=1, \mathbf{v} \perp \mathbf{v_1}}{\operatorname{arg max}} \ ||A\mathbf{v}|| \quad \mathrm{and} \quad \sigma_2 = ||A\mathbf{v_2}||.$$

The third singular vector and third singular value is defined as:

$$\mathbf{v_3} = \mathop{\arg\max}_{||\mathbf{v}||=1, \mathbf{v} \perp \mathbf{v_1}, \mathbf{v_2}} ||A\mathbf{v}|| \quad \text{and} \quad \sigma_3 = ||A\mathbf{v_3}||.$$

- ...and so on.
- Let r be the smallest positive integer such that: $\max_{|\mathbf{v}||=1,\mathbf{v}\perp\mathbf{v_1},...,\mathbf{v_r}}||A\mathbf{v}||=0$. Then A has r singular vectors $\mathbf{v_1},...,\mathbf{v_r}$.
- The vectors $\mathbf{v_1},...,\mathbf{v_r}$ are more specifically called the right singular vectors
- For any singular vector v_i, σ_i = ||Av_i|| may be interpreted as the component of the matrix A along v_i.
- Given this interpretation, the "the components should add up to give the whole content of A".

Frobenius Norm

- Let r be the smallest positive integer such that: $\max_{||\mathbf{v}||=1,\mathbf{v}\perp\mathbf{v_1},...,\mathbf{v_r}}||A\mathbf{v}||=0$. Then A has r singular vectors $\mathbf{v_1},...,\mathbf{v_r}$.
- The vectors v₁,...,v_r are more specifically called the right singular vectors.
- For any singular vector $\mathbf{v_i}$, $\sigma_i = ||A\mathbf{v_i}||$ may be interpreted as the component of the matrix A along $\mathbf{v_i}$.
- Given this interpretation, the "the components should add up to give the whole content of A".
- For any row a_j in the matrix A, we can write $||a_j||^2 = \sum_{i=1}^r (a_j \cdot \mathbf{v_i})^2$. This further gives:

$$\sum_{j=1}^{n} ||a_{j}||^{2} = \sum_{j=1}^{n} \sum_{i=1}^{r} (a_{j} \cdot \mathbf{v_{i}})^{2} = \sum_{i=1}^{r} ||A\mathbf{v_{i}}||^{2} = \sum_{i=1}^{r} \sigma_{i}^{2}.$$

Frobenius Norm

- Let r be the smallest positive integer such that: $\max_{|\mathbf{v}||=1,\mathbf{v}\perp\mathbf{v}_1,...,\mathbf{v}_r}||A\mathbf{v}||=0$. Then A has r singular vectors $\mathbf{v}_1,...,\mathbf{v}_r$.
- ullet The vectors $oldsymbol{v_1},...,oldsymbol{v_r}$ are more specifically called the right singular vectors.
- For any singular vector $\mathbf{v_i}$, $\sigma_i = ||A\mathbf{v_i}||$ may be interpreted as the component of the matrix A along $\mathbf{v_i}$.
- Given this interpretation, the "the components should add up to give the whole content of A".
- For any row a_j in the matrix A, we can write $||a_j||^2 = \sum_{i=1}^r (a_j \cdot \mathbf{v}_i)^2$. This further gives:

$$\sum_{j=1}^{n} ||a_{j}||^{2} = \sum_{j=1}^{n} \sum_{i=1}^{r} (a_{j} \cdot \mathbf{v_{i}})^{2} = \sum_{i=1}^{r} ||A\mathbf{v_{i}}||^{2} = \sum_{i=1}^{r} \sigma_{i}^{2}.$$

• The LHS of the above equation may be interpreted as "content of the matrix" defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given $n \times d$ matrix A, denoted by $||A||_F$, is defined as: $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^d A_{i,j}^2}$.

Frobenius Norm

• For any row a_j in the matrix A, we can write $||a_j||^2 = \sum_{i=1}^r (a_j \cdot \mathbf{v_i})^2$. This further gives:

$$\sum_{j=1}^{n} ||a_{j}||^{2} = \sum_{j=1}^{n} \sum_{i=1}^{r} (a_{j} \cdot \mathbf{v_{i}})^{2} = \sum_{i=1}^{r} ||A\mathbf{v_{i}}||^{2} = \sum_{i=1}^{r} \sigma_{i}^{2}.$$

• The LHS of the above equation may be interpreted as "content of the matrix" defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given $n \times d$ matrix A, denoted by $||A||_F$, is defined as: $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^d A_{i,j}^2}$.

Theorem

For any matrix A, the sum of squares of the right singular values equals the square of the Frobenius norm of the matrix.

Left singular vectors

- Let $\mathbf{v}_1, ..., \mathbf{v}_r$ be the right singular vectors and $\sigma_1, ..., \sigma_r$ be the corresponding singular values of matrix A.
- The left singular vectors are defined as $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$.
- $\sigma_i \mathbf{u}_i$ may be interpreted as a vector whose components are the projections of the rows of A onto \mathbf{v}_i .

Left singular vectors

- Let $\mathbf{v}_1, ..., \mathbf{v}_r$ be the right singular vectors and $\sigma_1, ..., \sigma_r$ be the corresponding eigenvalues of matrix A.
- The left singular vectors are defined as $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$.
- $\sigma_i \mathbf{u}_i$ may be interpreted as a vector whose components are the projections of the rows of A onto \mathbf{v}_i .
- $\sigma_i \mathbf{u}_i \mathbf{v}_i^T$ is a rank one matrix whose rows can be interpreted as component of rows of A along \mathbf{v}_i .
- Given this, the following decomposition of A into rank one matrices should make sense (we will prove this): $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$.

Theorem

Let A be any $n \times d$ matrix with right singular vectors $\mathbf{v}_1, ..., \mathbf{v}_r$, left-singular vectors $\mathbf{u}_1, ..., \mathbf{u}_r$, and corresponding singular values $\sigma_1, ..., \sigma_r$. Then $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$.

Theorem

Let A be any $n \times d$ matrix with right singular vectors $\mathbf{v}_1, ..., \mathbf{v}_r$, left-singular vectors $\mathbf{u}_1, ..., \mathbf{u}_r$, and corresponding singular values $\sigma_1, ..., \sigma_r$. Then $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$.

Proof sketch

- Lemma: Matrices A and B are identical iff for all vectors \mathbf{v} , $A\mathbf{v} = B\mathbf{v}$.
- Let $B = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$.
- For any j, $A\mathbf{v}_j = \sigma_j \mathbf{u}_j$ from the definition of u_j .
- $B\mathbf{v}_j = \left(\sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T\right) \mathbf{v}_j = \sigma_j \mathbf{u}_j$ from orthonormality.
- Fact: Any vector \mathbf{v} can be written as a linear combination of right eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_r$ and a vector perpendicular to $\mathbf{v}_1, ..., \mathbf{v}_r$.

Theorem

Let A be any $n \times d$ matrix with right singular vectors $\mathbf{v}_1, ..., \mathbf{v}_r$, left-singular vectors $\mathbf{u}_1, ..., \mathbf{u}_r$, and corresponding singular values $\sigma_1, ..., \sigma_r$. Then $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$.

- The decomposition $A = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ is called the Singular Value Decomposition (or SVD in short).
- In matrix notation, we can write $A = UDV^T$ where:
 - *U* is a $n \times r$ matrix where the i^{th} column is \mathbf{u}_i .
 - D is a $r \times r$ diagonal matrix with the i^{th} diagonal element σ_i .
 - V is a $d \times r$ matrix where the i^{th} column is \mathbf{v}_i .
- Question: How do we compute the SVD?
- Question: What are the applications of SVD?

Best rank-k approximation

- Let $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ be the SVD of an $n \times d$ matrix A.
- For $k \in \{1, ..., r\}$ let

$$A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T \quad \text{(i.e., sum truncated to first } k \text{ elements)}$$

- Claim 1: A_k has rank k.
- Claim 2: The rows of A_k are the projections of the rows of A onto the subspace V_k spanned by the first k singular vectors of A.
- We will prove that A_k is the best rank k approximation to A where the error is measured in terms of the Frobenius norm.

Theorem

For any matrix B with rank at most k:

$$||A - A_k||_F \le ||A - B||_F$$
.

Best rank-k approximation

$\mathsf{Theorem}$

For any matrix B with rank at most k:

$$||A-A_k||_F \leq ||A-B||_F.$$

- The above theorem tells us that A_k is a good approximation for A (w.r.t. Frobenius norm).
- The approximation A_k also is good for computation of product with any vector \mathbf{x} with $||\mathbf{x}|| \leq 1$.
 - Computing Ax would cost O(nd) multiplications.
 - However, computing $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}^T$ only costs O(kd + nk) multiplications.
- Question: Is A_k best rank-k approximation to A w.r.t. the computation $A\mathbf{x}$ for an arbitrary \mathbf{x} with $||\mathbf{x}|| \le 1$?
 - We want a rank-k matrix B such that $\max_{|\mathbf{x}| \le 1} ||(A B)\mathbf{x}||$ is minimized.

Best rank-k approximation

Theorem

For any matrix B with rank at most k:

$$||A - A_k||_F \le ||A - B||_F.$$

- The above theorem tells us that A_k is a good approximation for A (w.r.t. Frobenius norm).
- The approximation A_k also is good for computation of product with any vector \mathbf{x} with $||\mathbf{x}|| \leq 1$.
 - Computing Ax would cost O(nd) multiplications.
 - However, computing $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}^T$ only costs O(kd + nk) multiplications.
- Question: Is A_k best rank-k approximation to A w.r.t. the computation A**x** for an arbitrary **x** with $||\mathbf{x}|| \le 1$?
 - We want a rank-k matrix B such that $\max_{|\mathbf{x}||\leq 1}||(A-B)\mathbf{x}||$ is minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by $||A||_2$, is defined as: $||A||_2 = \max_{||\mathbf{x}|| \le 1} ||A\mathbf{x}||$.

Best rank-k approximation

- The approximation A_k also is good for computation of product with any vector \mathbf{x} with $||\mathbf{x}|| \leq 1$.
 - Computing Ax would cost O(nd) multiplications.
 - However, computing $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}^T$ only costs O(kd + nk) multiplications.
- Question: Is A_k best rank-k approximation to A w.r.t. the computation $A\mathbf{x}$ for an arbitrary \mathbf{x} with $||\mathbf{x}|| \le 1$?
 - We want a rank-k matrix B such that $\max_{|\mathbf{x}||\leq 1}||(A-B)\mathbf{x}||$ is minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by $||A||_2$, is defined as: $||A||_2 = \max_{|\mathbf{x}|| \le 1} ||A\mathbf{x}||$.

• Claim: $||A||_2 = \sigma_1$.

Best rank-k approximation

- The approximation A_k also is good for computation of product with any vector ${\bf x}$ with $||{\bf x}|| \le 1$.
 - Computing Ax would cost O(nd) multiplications.
 - However, computing $A_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}^T$ only costs O(kd + nk) multiplications.
- Question: Is A_k best rank-k approximation to A w.r.t. the computation $A\mathbf{x}$ for an arbitrary \mathbf{x} with $||\mathbf{x}|| \le 1$?
 - We want a rank-k matrix B such that $\max_{|\mathbf{x}||\leq 1}||(A-B)\mathbf{x}||$ is minimized.

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by $||A||_2$, is defined as: $||A||_2 = \max_{|\mathbf{x}|| \le 1} ||A\mathbf{x}||$.

- Claim: $||A||_2 = \sigma_1$.
- The question can now be rephrased as: Is A_k the best rank-k approximation to A w.r.t. the spectral norm?

Best rank-k approximation

Definition (Spectral norm)

The 2-norm or spectral norm of a matrix A, denoted by $||A||_2$, is defined as: $||A||_2 = \max_{|\mathbf{x}||<1} ||A\mathbf{x}||$.

 Question: Is A_k the best rank-k approximation to A w.r.t. the spectral norm?

$\mathsf{Theorem}$

Let A be any $n \times d$ matrix. For any matrix B of rank at most k:

$$||A - A_k||_2 \le ||A - B||_2.$$

• First, we show that the left singular vectors $\mathbf{u}_1, ..., \mathbf{u}_r$ are pairwise orthogonal.

Best rank-k approximation

Theorem

The left singular vectors $\mathbf{u}_1, ..., \mathbf{u}_r$ are pairwise orthogonal.

Best rank-k approximation

Theorem

Let A be any $n \times d$ matrix. For any matrix B of rank at most k:

$$||A - A_k||_2 \le ||A - B||_2.$$

• First, we show that the left singular vectors $\mathbf{u}_1, ..., \mathbf{u}_r$ are pairwise orthogonal.

Theorem

The left singular vectors $\mathbf{u}_1, ..., \mathbf{u}_r$ are pairwise orthogonal.

We will also need the following theorem.

$\mathsf{Theorem}$

$$||A - A_k||_2^2 = \sigma_{k+1}^2.$$

Best rank-k approximation

Theorem

Let A be any $n \times d$ matrix. For any matrix B of rank at most k:

$$||A - A_k||_2 \le ||A - B||_2.$$

Theorem

The left singular vectors $\mathbf{u}_1, ..., \mathbf{u}_r$ are pairwise orthogonal.

Theorem

$$||A - A_k||_2^2 = \sigma_{k+1}^2.$$

• Finally, we show the following:

Theorem

Let A be an $n \times d$ matrix. For any matrix B of rank at most k:

$$||A - A_k||_2 \le ||A - B||_2.$$

• Exercise: Show that u_i 's are the right singular vectors for the matrix A^T .

End