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High Dimension Space
Random Projection and Johnson Lindenstrauss (JL)

Theorem (Johnson-Lindenstrauss (JL) Theorem)

For any 0 < ε < 1 and any integer n, let k ≥ 3
cε2

ln n with c as in the

Random Projection Theorem. For any set of n points in Rd , the
random projection f : Rd → Rk defined as before has the property
that for all pairs of points vi and vj, with probability at least (1− 3

2n ),

(1− ε)
√
k ||vi − vj|| ≤ ||f (vi)− f (vj)|| ≤ (1 + ε)

√
k||vi − vj||.

Here is an application of the JL Theorem for the Nearest
Neighbour (NN) problem:

Suppose we need to pre-process n data points X ⊆ Rd so that we
can answer at most n′ queries of the form: “find the point from X
that is nearest to a given point p ∈ Rd”.
If we use a JL mapping with k ≥ 3

cε2 ln (n + n′), then we can store
f (x) for all x ∈ X . For a query point p, we just return the the
point that is nearest to f (p).
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Separating Gaussians
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Separating Gaussians
Mixture of Gaussians

Mixture of Gaussians are used to model heterogenous data
coming from multiple sources.
Consider an example of height of people in a city:

Let pM(x) denote the Gaussian density of height of men in the city
and pF (x) for women.
Let wM and wF denote the proportion of men and women in the
city respectively.
So, the mixture model p(x) = wM · pM(x) + wF · pF (x) is a natural
way to model the density of hight of people in the city.
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Separating Gaussians
Mixture of Gaussians

Mixture of Gaussians are used to model heterogenous data
coming from multiple sources.
Consider an example of height of people in a city:

Let pM(x) denote the Gaussian density of height of men in the city
and pF (x) for women.
Let wM and wF denote the proportion of men and women in the
city respectively.
So, the mixture model p(x) = wM · pM(x) + wF · pF (x) is a natural
way to model the density of hight of people in the city.

The parameter estimation problem is to guess the parameters of
the mixture given samples from the mixture.

In our above example this means that we are given heights of a
number of people of the city and the task is to infer wM ,wF and
the mean and variance of pM(x) and pF (x).
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Separating Gaussians
Mixture of Gaussians

Mixture of Gaussians are used to model heterogenous data
coming from multiple sources.
Consider an example of height of people in a city:

Let pM(x) denote the Gaussian density of height of men in the city
and pF (x) for women.
Let wM and wF denote the proportion of men and women in the
city respectively.
So, the mixture model p(x) = wM · pM(x) + wF · pF (x) is a natural
way to model the density of hight of people in the city.

The parameter estimation problem is to guess the parameters of
the mixture given samples from the mixture.

In our above example this means that we are given heights of a
number of people of the city and the task is to infer wM ,wF and
the mean and variance of pM(x) and pF (x).
In the example, given the height of an individual can we infer
whether it is a man or a woman?
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given samples from a mixture of two spherical Gaussians with unit
variance in Rd , separate the samples.

If the means of the Gaussians are too close, then it will be hard to
distinguish samples from the distributions. Suppose the distance
between the means is ∆.
We will try to design an algorithm that estimates the parameters
for some minimum value on ∆.
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given samples from a mixture of two spherical Gaussians with unit
variance in Rd , separate the samples.

If the means of the Gaussians are too close, then it will be hard to
distinguish samples from the distributions. Suppose the distance
between the means is ∆.
We will try to design an algorithm that estimates the parameters
for some minimum value on ∆.
Claim 1: Let x and y be two random points sampled from the
same Gaussian. Then ||x− y|| =

√
2d ± O(1) w.h.p.

Claim 2: Let x and y be two random points sampled from
different Gaussians. Then ||x− y|| =

√
2d + ∆2 ± O(1) w.h.p.
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given samples from a mixture of two spherical Gaussians with unit
variance in Rd , separate the samples.

If the means of the Gaussians are too close, then it will be hard to
distinguish samples from the distributions. Suppose the distance
between the means is ∆.
We will try to design an algorithm that estimates the parameters
for some minimum value on ∆.
Claim 1: Let x and y be two random points sampled from the
same Gaussian. Then ||x− y|| =

√
2d ± O(1) w.h.p.

Claim 2: Let x and y be two random points sampled from
different Gaussians. Then ||x− y|| =

√
2d + ∆2 ± O(1) w.h.p.

So, we can distinguish points from the same/different Gaussians
based on the pairwise distance as long as√

2d + O(1) ≤
√

2d + ∆2 − O(1) which implies that
∆ = ω(d1/4).

Since we want this for almost all point pairs there is an extra
factor of O(

√
log n) in ∆.
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given n samples from a mixture of two spherical Gaussians with
unit variance in Rd , separate the samples.

Let the distance between the means be ∆ = Ω(d1/4
√

log n).
Here is an algorithm for separating points from the two Gaussians.

Algorithm

Calculate pairwise distance between all pairs of points
The cluster of smallest pairwise distances must come from the
same Gaussian. Remove these points.
The remaining points come from the second Gaussian.
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given n samples from a mixture of two spherical Gaussians with
unit variance in Rd , separate the samples.

The parameter estimation problem was to estimate the
parameters of the Gaussian that the data points are sampled.
Since, we now have an algorithm for separating points, we should
think of how to fit a spherical Gaussian to the given data.
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Separating Gaussians
Parameter estimation

Given samples x1, ..., xn in a d-dimensional space, we want to find
the spherical Gaussian that best fits the points.
Let f be an unknown Gaussian with mean µ and variance σ2 in
each direction.
The probability density of picking these points from this Gaussian

is given by c · exp
(
− ||x1−µ||

2+...+||xn−µ||2
2σ2

)
.

The Maximum Likelihood Estimator (MLE) of f , given the
samples x1, ..., xn is the f that maximizes the above probability
density.

Theorem

The maximum likelihood spherical Gaussian for a set of samples is the
Gaussian with the center equal to the sample mean and standard
deviation equal to the standard deviation of the sample from the true
mean.
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Best Fit Subspaces and Singular Value Decomposition (SVD)
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

Question: How do we define best fit line?
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

Question: How do we define best fit line?

A line that minimises the sum of squared distance of the n points
to the line.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

Question: How do we define best fit line?

A line that minimises the sum of squared distance of the n points
to the line.
Claim: The best fit line maximises the sum of projections squared
of the n points to the line.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

The best fit line through the origin is one that minimises the sum
of squared distance of the n points to the line.
Let v denote a unit vector (d × 1 matrix) in the direction of the
best fit line.
Claim: The sum of squared lengths of projections of the points
onto v is ||Av||2.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

The best fit line through the origin is one that minimises the sum
of squared distance of the n points to the line.
Let v denote a unit vector (d × 1 matrix) in the direction of the
best fit line.
Claim: The sum of squared lengths of projections of the points
onto v is ||Av||2.
So, the best fit line is defined by unit vector v that maximises
||Av||.
This is the first singular vector of the matrix A. So, the first
singular vector is defined as:

v1 = arg max
||v||=1

||Av||
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

The best fit line through the origin is one that minimises the sum
of squared distance of the n points to the line.
Let v denote a unit vector (d × 1 matrix) in the direction of the
best fit line.
Claim: The sum of squared lengths of projections of the points
onto v is ||Av||2.
So, the best fit line is defined by unit vector v that maximises
||Av||.
This is the first singular vector of the matrix A. So, the first
singular vector is defined as:

v1 = arg max
||v||=1

||Av||

The value σ1 = ||Av1|| is called the first singular value of A.
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit line through the origin for the given n
points.

The first singular vector is defined as:

v1 = arg max
||v||=1

||Av||

The value σ1 = ||Av1|| is called the first singular value of A.
So, σ21 is equal to the sum of squared length of projections.
Note that if all the data points are “close” to a line through the
origin, then the first singular vector gives such a line.
Question: if the data points are close to a plane (and in general
close to a k-dimensional subspace), then how do we find such a
plane?
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Best Fit Subspaces and SVD
Best fit line

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit plane through the origin for the given n
points.

Let v1 denote the first singular vector of A.
Idea: Find a unit vector v perpendicular to v1 that maximises
||Av||. Output the plane through the origin defined by vectors v1
and v.
Claim: The plane defined above indeed maximises sum of squared
distances of all the points.
The second singular vector is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av||.

The value σ2 = ||Av2|| is called the second singular value of A.
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Best Fit Subspaces and SVD
Best fit plane

Problem

Given an n × d matrix A, where we interpret the rows of the matrix as
points in Rd , find a best fit plane through the origin for the given n
points.

Let v1 denote the first singular vector of A.
The second singular vector is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av||.

The value σ2 = ||Av2|| is called the second singular value of A.

Theorem

For any matrix A, the plane spanned by v1 and v2 is the best fit plane.
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Best Fit Subspaces and SVD
Best fit plane

The first singular vector is defined as: v1 = arg max||v||=1 ||Av||.
The second singular vector is defined as:
v2 = arg max||v||=1,v⊥v1 ||Av||.

Theorem

For any matrix A, the plane spanned by v1 and v2 is the best fit plane.

Proof sketch

Let W denote the best fit plane for A.
Claim 1: There exists an orthonormal basis (w1,w2) of W such
that w2 is perpendicular to v1.
Claim 2: ||Aw1||2 ≤ ||Av1||2.
Claim 3: ||Aw2||2 ≤ ||Av2||2.
This gives ||Aw1||2 + ||Aw2||2 ≤ ||Av1||2 + ||Av2||2.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Best Fit Subspaces and SVD
Best fit subspace

The first singular vector and first singular value is defined as:

v1 = arg max
||v||=1

||Av|| and σ1 = ||Av1||

The second singular vector and second singular value is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av|| and σ2 = ||Av2||.

The third singular vector and third singular value is defined as:

v3 = arg max
||v||=1,v⊥v1,v2

||Av|| and σ3 = ||Av3||.

...and so on.
Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.

Theorem

Let A be any n × d matrix with r singular vectors v1, ..., vr. For
1 ≤ k ≤ r , let Vk be the subspace spanned by v1, ..., vk. For each k, Vk is
the best-fit k-dimensional subspace for A.
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Best Fit Subspaces and SVD
Best fit subspace

The first singular vector and first singular value is defined as:

v1 = arg max
||v||=1

||Av|| and σ1 = ||Av1||

The second singular vector and second singular value is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av|| and σ2 = ||Av2||.

The third singular vector and third singular value is defined as:

v3 = arg max
||v||=1,v⊥v1,v2

||Av|| and σ3 = ||Av3||.

...and so on.
Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.
The vectors v1, ..., vr are more specifically called the right singular
vectors.
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Best Fit Subspaces and SVD
Best fit subspace

The first singular vector and first singular value is defined as:

v1 = arg max
||v||=1

||Av|| and σ1 = ||Av1||

The second singular vector and second singular value is defined as:

v2 = arg max
||v||=1,v⊥v1

||Av|| and σ2 = ||Av2||.

The third singular vector and third singular value is defined as:

v3 = arg max
||v||=1,v⊥v1,v2

||Av|| and σ3 = ||Av3||.

...and so on.
Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.
The vectors v1, ..., vr are more specifically called the right singular
vectors.
For any singular vector vi, σi = ||Avi|| may be interpreted as the
component of the matrix A along vi.
Given this interpretation, the “the components should add up to give
the whole content of A”.
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Best Fit Subspaces and SVD
Frobenius Norm

Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.
The vectors v1, ..., vr are more specifically called the right singular
vectors.
For any singular vector vi, σi = ||Avi|| may be interpreted as the
component of the matrix A along vi.
Given this interpretation, the “the components should add up to give
the whole content of A”.
For any row aj in the matrix A, we can write ||aj ||2 =

∑r
i=1(aj · vi)2.

This further gives:

n∑
j=1

||aj ||2 =
n∑

j=1

r∑
i=1

(aj · vi)2 =
r∑

i=1

||Avi||2 =
r∑

i=1

σ2i .
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Best Fit Subspaces and SVD
Frobenius Norm

Let r be the smallest positive integer such that:
max||v||=1,v⊥v1,...,vr ||Av|| = 0. Then A has r singular vectors v1, ..., vr.
The vectors v1, ..., vr are more specifically called the right singular
vectors.
For any singular vector vi, σi = ||Avi|| may be interpreted as the
component of the matrix A along vi.
Given this interpretation, the “the components should add up to give
the whole content of A”.
For any row aj in the matrix A, we can write ||aj ||2 =

∑r
i=1(aj · vi)2.

This further gives:

n∑
j=1

||aj ||2 =
n∑

j=1

r∑
i=1

(aj · vi)2 =
r∑

i=1

||Avi||2 =
r∑

i=1

σ2i .

The LHS of the above equation may be interpreted as “content of the
matrix” defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given n × d matrix A, denoted by ||A||F , is

defined as: ||A||F =
√∑n

i=1

∑d
j=1 A

2
i ,j .
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Best Fit Subspaces and SVD
Frobenius Norm

For any row aj in the matrix A, we can write ||aj ||2 =
∑r

i=1(aj · vi)2.
This further gives:

n∑
j=1

||aj ||2 =
n∑

j=1

r∑
i=1

(aj · vi)2 =
r∑

i=1

||Avi||2 =
r∑

i=1

σ2i .

The LHS of the above equation may be interpreted as “content of the
matrix” defines the Frobenius Norm of the matrix A.

Definition (Frobenius Norm)

The Frobenius norm of a given n × d matrix A, denoted by ||A||F , is

defined as: ||A||F =
√∑n

i=1

∑d
j=1 A

2
i ,j .

Theorem

For any matrix A, the sum of squares of the right singular values equals
the square of the Frobenius norm of the matrix.
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Singular Value Decomposition (SVD)
Left singular vectors

Let v1, ..., vr be the right singular vectors and σ1, ..., σr be the
corresponding singular values of matrix A.
The left singular vectors are defined as ui = 1

σi
Avi .

σiui may be interpreted as a vector whose components are the
projections of the rows of A onto vi .
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Singular Value Decomposition (SVD)
Left singular vectors

Let v1, ..., vr be the right singular vectors and σ1, ..., σr be the
corresponding eigenvalues of matrix A.
The left singular vectors are defined as ui = 1

σi
Avi .

σiui may be interpreted as a vector whose components are the
projections of the rows of A onto vi .
σiuiv

T
i is a rank one matrix whose rows can be interpreted as

component of rows of A along vi .
Given this, the following decomposition of A into rank one matrices
should make sense (we will prove this): A =

∑r
i=1 σiuiv

T
i .

Theorem

Let A be any n × d matrix with right singular vectors v1, ..., vr ,
left-singular vectors u1, ...,ur , and corresponding singular values σ1, ..., σr .
Then A =

∑r
i=1 σiuiv

T
i .
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Singular Value Decomposition (SVD)

Theorem

Let A be any n × d matrix with right singular vectors v1, ..., vr ,
left-singular vectors u1, ...,ur , and corresponding singular values σ1, ..., σr .
Then A =

∑r
i=1 σiuiv

T
i .

Proof sketch

Lemma: Matrices A and B are identical iff for all vectors v, Av = Bv.
Let B =

∑r
i=1 σiuiv

T
i .

For any j , Avj = σjuj from the definition of uj .
Bvj =

(∑r
i=1 σiuiv

T
i

)
vj = σjuj from orthonormality.

Fact: Any vector v can be written as a linear combination of right
eigenvectors v1, ..., vr and a vector perpendicular to v1, ..., vr .
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Singular Value Decomposition (SVD)

Theorem

Let A be any n × d matrix with right singular vectors v1, ..., vr ,
left-singular vectors u1, ...,ur , and corresponding singular values
σ1, ..., σr . Then A =

∑r
i=1 σiuiv

T
i .

The decomposition A =
∑r

i=1 σiuiv
T
i is called the Singular Value

Decomposition (or SVD in short).
In matrix notation, we can write A = UDV T where:

U is a n × r matrix where the i th column is ui .
D is a r × r diagonal matrix with the i th diagonal element σi .
V is a d × r matrix where the i th column is vi .

Question: How do we compute the SVD?
Question: What are the applications of SVD?
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End
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