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Gaussians in High Dimension
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High Dimension Space
Gaussian annulus theorem

A one dimensional Gaussian has much of its probability mass
close to the origin.
Does this generalise to higher dimensions?
A d-dimensional spherical Gaussian with 0 means and σ2 variance
in each coordinate has density:

p(x) =
1

σd(2π)d/2
e−

||x||2

2σ2

Let σ2 = 1. Even though the probability density is high within the
unit ball, the volume of of the unit ball is negligible and hence the
probability mass within the unit ball is negligible.
When the radius is

√
d , the volume becomes large enough to

make the probability mass around the
√
d radius significant.

Even though the volume keeps increasing beyond the
√
d radius,

the probability density keeps diminishing. So, the probability mass
much beyond the

√
d radius is again negligible.
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High Dimension Space
Gaussian annulus theorem

Even though the probability density is high within the unit ball,
the volume of of the unit ball is negligible and hence the
probability mass within the unit ball is negligible.
When the radius is

√
d , the volume becomes large enough to

make the probability mass around the
√
d radius significant.

Even though the volume keeps increasing beyond the
√
d radius,

the probability density keeps diminishing. So, the probability mass
much beyond the

√
d radius is again negligible.

This intuition is formalised in the next theorem.

Theorem (Gaussian Annulus Theorem)

For a d-dimensional spherical Gaussian with unit variance in each
direction, for any β ≤

√
d, all but at most 3e−cβ

2
of the probability

mass lies within the annulus
√
d − β ≤ ||x|| ≤

√
d + β, where c is a

fixed positive constant.
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High Dimension Space
Gaussian annulus theorem

Theorem (Gaussian Annulus Theorem)

For a d-dimensional spherical Gaussian with unit variance in each
direction, for any β ≤

√
d, all but at most 3e−cβ

2
of the probability

mass lies within the annulus
√
d − β ≤ ||x|| ≤

√
d + β, where c is a

fixed positive constant.

E[||x||2] =
∑d

i=1 E[x2i ] = d · E[x21 ] = d .
So, the average squared distance of a point from center is d . The
Gaussian annulus theorem essentially says that the distance of
points is tightly concentrated around the distance

√
d (called

radius of Gaussian).
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Random Projection and Johnson Lindenstrauss (JL)

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



High Dimension Space
Random Projection and Johnson Lindenstrauss (JL)

Typical data analysis tasks requires one to process
d-dimensional point set of cardinality n where n and d are
very large numbers.

Many data processing tasks depends only on the pair-wise
distances between the points (e.g., nearest neighbour search).

Each such distance query has a significant computational cost
due to the large value of the dimension d .

Question: Can we perform dimensionality reduction on the
dataset? That is, find a mapping f : Rd → Rk with k << d
such that the pairwise distances between the mapped points
are preserved (in a relative sense).
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High Dimension Space
Random Projection and Johnson Lindenstrauss (JL)

Claim

There exists a mapping f : Rd → Rk with k << d such that the
pairwise distances between the mapped points are preserved (in a
relative sense).

Consider the following mapping:

f (v) = (u1 · v, ...,uk · v),

where u1, ...,uk ∈ Rd are Gaussian vectors with unit variance and
zero mean in each coordinate.
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High Dimension Space
Random Projection and Johnson Lindenstrauss (JL)

Claim

There exists a mapping f : Rd → Rk with k << d such that the
pairwise distances between the mapped points are preserved (in a
relative sense).

Consider the following mapping:

f (v) = (u1 · v, ...,uk · v),

where u1, ...,uk ∈ Rd are Gaussian vectors with unit variance and
zero mean in each coordinate.
We will show that ||f (v)|| ≈

√
k ||v||.

Due to the nature of the mapping, for any two vectors
v1, v2 ∈ Rd we have:

||f (v1)− f (v2)|| ≈
√
k · ||v1 − v2||.

So, the distance between v1 and v2 can be estimated by
computing the distance between the mapped points and then
dividing the result by

√
k .
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High Dimension Space
Random Projection and Johnson Lindenstrauss (JL)

Claim

For any v ∈ Rd , ||f (v)|| ≈
√
k ||v||.

Theorem (Random Projection Theorem)

There exists a constant c > 0 such that for any ε ∈ (0, 1) and v ∈ Rd ,

Pr
(∣∣∣||f (v)|| −

√
k ||v||

∣∣∣ ≥ ε√k ||v||) ≤ 3e−ckε
2
.

The probability is over the randomness involved in sampling the
vectors ui’s.
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High Dimension Space
Random Projection and Johnson Lindenstrauss (JL)

Claim

For any v ∈ Rd , ||f (v)|| ≈
√
k ||v||.

Theorem (Random Projection Theorem)

There exists a constant c > 0 such that for any ε ∈ (0, 1) and v ∈ Rd ,

Pr
(∣∣∣||f (v)|| −

√
k ||v||

∣∣∣ ≥ ε√k ||v||) ≤ 3e−ckε
2
.

The probability is over the randomness involved in sampling the vectors
ui’s.

Proof

Claim 1: It is sufficient to prove the statement for unit vectors v.
For all ui,we have:

Var(ui · v) = Var(
d∑

j=1

uijvj) =
d∑

j=1

v2j Var(uij) =
d∑

j=1

v2j = 1.

So, f (v) = (u1 · v, ...,uk · v) is a k dimensional Gaussian with unit
variance in each coordinate.
The result now follows from a simple application of the Gaussian
Annulus Theorem.
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High Dimension Space
Random Projection and Johnson Lindenstrauss (JL)

Claim

For any two vectors v1, v2 ∈ Rd , ||f (v1)− f (v2)|| ≈
√
k · ||v1 − v2||.

Theorem (Johnson-Lindenstrauss (JL) Theorem)

For any 0 < ε < 1 and any integer n, let k ≥ 3
cε2

ln n with c as in the

Random Projection Theorem. For any set of n points in Rd , the
random projection f : Rd → Rk defined as before has the property
that for all pairs of points vi and vj, with probability at least (1− 3

2n ),

(1− ε)
√
k ||vi − vj|| ≤ ||f (vi)− f (vj)|| ≤ (1 + ε)

√
k||vi − vj||.

Proof

We obtain the result from the Random Projection Theorem by
applying the union bound with respect to at most

(n
2

)
< n2/2

pairs of points.
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High Dimension Space
Random Projection and Johnson Lindenstrauss (JL)

Theorem (Johnson-Lindenstrauss (JL) Theorem)

For any 0 < ε < 1 and any integer n, let k ≥ 3
cε2

ln n with c as in the

Random Projection Theorem. For any set of n points in Rd , the
random projection f : Rd → Rk defined as before has the property
that for all pairs of points vi and vj, with probability at least (1− 3

2n ),

(1− ε)
√
k ||vi − vj|| ≤ ||f (vi)− f (vj)|| ≤ (1 + ε)

√
k||vi − vj||.

Here is an application of the JL Theorem for the Nearest
Neighbour (NN) problem:

Suppose we need to pre-process n data points X ⊆ Rd so that we
can answer at most n′ queries of the form: “find the point from X
that is nearest to a given point p ∈ Rd”.
If we use a JL mapping with k ≥ 3

cε2 ln (n + n′), then we can store
f (x) for all x ∈ X . For a query point p, we just return the the
point that is nearest to f (p).
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Separating Gaussians
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Separating Gaussians
Mixture of Gaussians

Mixture of Gaussians are used to model heterogenous data
coming from multiple sources.
Consider an example of height of people in a city:

Let pM(x) denote the Gaussian density of height of men in the city
and pF (x) for women.
Let wM and wF denote the proportion of men and women in the
city respectively.
So, the mixture model p(x) = wM · pM(x) + wF · pF (x) is a natural
way to model the density of hight of people in the city.
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Separating Gaussians
Mixture of Gaussians

Mixture of Gaussians are used to model heterogenous data
coming from multiple sources.
Consider an example of height of people in a city:

Let pM(x) denote the Gaussian density of height of men in the city
and pF (x) for women.
Let wM and wF denote the proportion of men and women in the
city respectively.
So, the mixture model p(x) = wM · pM(x) + wF · pF (x) is a natural
way to model the density of hight of people in the city.

The parameter estimation problem is to guess the parameters of
the mixture given samples from the mixture.

In our above example this means that we are given heights of a
number of people of the city and the task is to infer wM ,wF and
the mean and variance of pM(x) and pF (x).
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Separating Gaussians
Mixture of Gaussians

Mixture of Gaussians are used to model heterogenous data
coming from multiple sources.
Consider an example of height of people in a city:

Let pM(x) denote the Gaussian density of height of men in the city
and pF (x) for women.
Let wM and wF denote the proportion of men and women in the
city respectively.
So, the mixture model p(x) = wM · pM(x) + wF · pF (x) is a natural
way to model the density of hight of people in the city.

The parameter estimation problem is to guess the parameters of
the mixture given samples from the mixture.

In our above example this means that we are given heights of a
number of people of the city and the task is to infer wM ,wF and
the mean and variance of pM(x) and pF (x).
In the example, given the height of an individual can we infer
whether it is a man or a woman?
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given samples from a mixture of two spherical Gaussians with unit
variance in Rd , separate the samples.

If the means of the Gaussians are too close, then it will be hard to
distinguish samples from the distributions. Suppose the distance
between the means is ∆.
We will try to design an algorithm that estimates the parameters
for some minimum value on ∆.
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given samples from a mixture of two spherical Gaussians with unit
variance in Rd , separate the samples.

If the means of the Gaussians are too close, then it will be hard to
distinguish samples from the distributions. Suppose the distance
between the means is ∆.
We will try to design an algorithm that estimates the parameters
for some minimum value on ∆.
Claim 1: Let x and y be two random points sampled from the
same Gaussian. Then ||x− y|| =

√
2d ± O(1) w.h.p.

Claim 2: Let x and y be two random points sampled from
different Gaussians. Then ||x− y|| =

√
2d + ∆2 ± O(1) w.h.p.
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given samples from a mixture of two spherical Gaussians with unit
variance in Rd , separate the samples.

If the means of the Gaussians are too close, then it will be hard to
distinguish samples from the distributions. Suppose the distance
between the means is ∆.
We will try to design an algorithm that estimates the parameters
for some minimum value on ∆.
Claim 1: Let x and y be two random points sampled from the
same Gaussian. Then ||x− y|| =

√
2d ± O(1) w.h.p.

Claim 2: Let x and y be two random points sampled from
different Gaussians. Then ||x− y|| =

√
2d + ∆2 ± O(1) w.h.p.

So, we can distinguish points from the same/different Gaussians
based on the pairwise distance as long as√

2d + O(1) ≤
√

2d + ∆2 − O(1) which implies that
∆ = ω(d1/4).

Since we want this for almost all point pairs there is an extra
factor of O(

√
log n) in ∆.
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given n samples from a mixture of two spherical Gaussians with
unit variance in Rd , separate the samples.

Let the distance between the means be ∆ = Ω(d1/4
√

log n).
Here is an algorithm for separating points from the two Gaussians.

Algorithm

Calculate pairwise distance between all pairs of points
The cluster of smallest pairwise distances must come from the
same Gaussian. Remove these points.
The remaining points come from the second Gaussian.
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Separating Gaussians
Parameter estimation

We will first consider the following simpler problem of separating
unit variance Gaussians:

Given n samples from a mixture of two spherical Gaussians with
unit variance in Rd , separate the samples.

The parameter estimation problem was to estimate the
parameters of the Gaussian that the data points are sampled.
Since, we now have an algorithm for separating points, we should
think of how to fit a spherical Gaussian to the given data.
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Separating Gaussians
Parameter estimation

Given samples x1, ..., xn in a d-dimensional space, we want to find
the spherical Gaussian that best fits the points.
Let f be an unknown Gaussian with mean µ and variance σ2 in
each direction.
The probability density of picking these points from this Gaussian

is given by c · exp
(
− ||x1−µ||

2+...+||xn−µ||2
2σ2

)
.

The Maximum Likelihood Estimator (MLE) of f , given the
samples x1, ..., xn is the f that maximizes the above probability
density.

Theorem

The maximum likelihood spherical Gaussian for a set of samples is the
Gaussian with the center equal to the sample mean and standard
deviation equal to the standard deviation of the sample from the true
mean.
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End
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