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High Dimension Space
High dimensional geometry

Claim

For any unit length vector v ∈ Rd defining “north”, most of the volume of
the unit ball lies in the thin slab containing points whose dot product with
v is O(1/

√
d) (that is, the dot product is close to 0).

Argument

Let v be the first coordinate vector. That is, v = (1, 0, 0, ..., 0).
We will argue that most of the volume of the unit ball has
|x1| = O(1/

√
d).

Theorem: For any c ≥ 1 and d ≥ 3, at least a (1− 2
c e
−c2/2) fraction

of the volume of the d-dimensional unit ball has |x1| ≤ c√
d−1 .
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High Dimension Space
High dimensional geometry

Claim

Most of the volume of a unit ball in Rd is contained in an annulus of
width O(1/d) near the boundary.

Claim

For any unit length vector v ∈ Rd defining “north”, most of the volume of
the unit ball lies in the thin slab containing points whose dot product with
v is O(1/

√
d) (that is, the dot product is close to 0).

Claim

If we draw two random points from the unit ball, then with high
probability their vectors will be nearly orthogonal to each other.
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High Dimension Space
High dimensional geometry

Claim

Most of the volume of a unit ball in Rd is contained in an annulus of
width O(1/d) near the boundary.

Claim

For any unit length vector v ∈ Rd defining “north”, most of the volume of
the unit ball lies in the thin slab containing points whose dot product with
v is O(1/

√
d) (that is, the dot product is close to 0).

Claim

If we draw two random points from the unit ball, then with high
probability their vectors will be nearly orthogonal to each other.

Argument

Both have length 1− O(1/d) (whp).
The dot product of these vectors are ±O(1/

√
d) (whp).

So, the angle between them is close to π/2 (whp).
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High Dimension Space
High dimensional geometry

Claim

If we draw two random points from the unit ball, then with high
probability their vectors will be nearly orthogonal to each other.

Argument

Both have length 1− O(1/d) (whp).
The dot product of these vectors are ±O(1/

√
d) (whp).

So, the angle between them is close to π/2 (whp).

Theorem

Consider drawing n points x1, ..., xn at random from the unit ball. The
following holds with probability 1− O(1/n).

1 ||xi|| ≥ 1− 2 ln n
d for all i , and

2 |〈xi, xj〉| ≤
√
6 ln n√
d−1 for all i 6= j .
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High Dimension Space
High dimensional geometry

Claim

The volume of a unit ball in Rd goes to 0 as d goes to infinity.

Argument

Consider a box of side 2c√
d−1 for c = 2

√
ln d centered around the

origin.
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High Dimension Space
High dimensional geometry

Claim

The volume of a unit ball in Rd goes to 0 as d goes to infinity.

Argument

Consider a box of side 2c√
d−1 for c = 2

√
ln d centered around the

origin.
The fraction of volume of the unit ball with |x1| ≥ c√

d−1 is at most
2
c e
−c2/2 = 1

d2
√
ln d

< 1
d2 .

So, the ratio of volume of box to the volume of a unit ball is at least
1/2.
The volume of the box goes to 0 as d goes to infinity since the

volume is
(

4
√

ln d
d−1

)d
.

So, volume of the unit cube goes to 0 as d →∞.
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Generating a random point from a unit ball
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High Dimension Space
Generating a random point from a unit ball

Question

How do we generate a random point from a unit ball in Rd?

Idea 1: Pick x1, ..., xd randomly from the interval [−1,+1]. If
x = (x1, ..., xd) is inside the unit ball, then output x, else repeat.

When d is small (say d = 2, 3), then this idea indeed works. Does it
work for large values of d?
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High Dimension Space
Generating a random point from a unit ball

Question

How do we generate a random point from a unit ball in Rd?

Idea 1: Pick x1, ..., xd randomly from the interval [−1,+1]. If
x = (x1, ..., xd) is inside the unit ball, then output x, else repeat.

When d is small (say d = 2, 3), then this idea indeed works. Does it
work for large values of d?

Idea 2: Randomly sample x1, ..., xd independently from a zero mean

and unit variance Gaussian (i.e., with pdf 1√
2π
e−x

2/2). Normalize the

vector x = (x1, ..., xd) to a unit vector (i.e., output x
||x||).

From spherical symmetry, the output point is a random point on the
surface of the unit ball.

The pdf of x = (x1, ..., xd) is given by 1
(2π)d/2

· e−
x21+...+x2d

2 .
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High Dimension Space
Generating a random point from a unit ball

Question

How do we generate a random point from a unit ball in Rd?

Idea 2: Randomly sample x1, ..., xd independently from a zero mean

and unit variance Gaussian (i.e., with pdf 1√
2π
e−x

2/2). Normalize the

vector x = (x1, ..., xd) to a unit vector (i.e., output x
||x||).

From spherical symmetry, the output point is a random point on the
surface of the unit ball.

The pdf of x = (x1, ..., xd) is given by 1
(2π)d/2

· e−
x21+...+x2d

2 .

Question

How do we sample a random point x from a zero mean and unit variance
Gaussian?
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High Dimension Space
Generating a random point from a unit ball

Question

How do we sample a random point x from a zero mean and unit variance
Gaussian?

More general question: How do we sample a point x given its
cumulative distribution function (cdf) C (x)? We assume that we can
sample from a uniform distribution in the interval [0, 1].
Answer: Sample a uniform random number u ∈ [0, 1] and output
x = C−1(u).
Since we do not have a closed form expression for the cdf of a
Gaussian distribution, the above idea does not help in our case in a
straightforward manner. However, we can use numerical
approximations.
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High Dimension Space
Generating a random point from a unit ball

Question

How do we sample a random point x from a zero mean and unit variance
Gaussian?

More general question: How do we sample a point x given its
cumulative distribution function (cdf) C (x)? We assume that we can
sample from a uniform distribution in the interval [0, 1].
Answer: Sample a uniform random number u ∈ [0, 1] and output
x = C−1(u).
Since we do not have a closed form expression for the cdf of a
Gaussian distribution, the above idea does not help in our case in a
straightforward manner. However, we can use numerical
approximations.
Another method is called the Box-Muller transform: Let U1,U2

denote uniform random numbers in [0, 1]. Then

X1 =
√
−2 lnU1 · cos (2πU2) and X2 =

√
−2 lnU1 · sin (2πU2)

are independent samples from zero mean and unit variance Gaussian.
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High Dimension Space
Generating a random point from a unit ball

Question

How do we generate a random point from a unit ball (surface and interior)
in Rd?

Idea: Randomly sample x1, ..., xd from zero mean and unit variance
Gaussian and scale the vector x

||x|| on the surface of the unit ball by a

scalar ρ ∈ [0, 1]. Here x = (x1, ..., xd).
Question: Do we pick ρ from a uniform distribution over [0, 1]?
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High Dimension Space
Generating a random point from a unit ball

Question

How do we generate a random point from a unit ball (surface and interior)
in Rd?

Idea: Randomly sample x1, ..., xd from zero mean and unit variance
Gaussian and scale the vector x

||x|| on the surface of the unit ball by a

scalar ρ ∈ [0, 1]. Here x = (x1, ..., xd).
Question: Do we pick ρ from a uniform distribution over [0, 1]? No
The density of points at radius r is proportional to rd−1.
So, we should pick ρ(r) with density drd−1.
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Gaussians in High Dimension
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High Dimension Space
Gaussian annulus theorem

A one dimensional Gaussian has much of its probability mass
close to the origin.
Does this generalise to higher dimensions?
A d-dimensional spherical Gaussian with 0 means and σ2 variance
in each coordinate has density:

p(x) =
1

σd(2π)d/2
e−

||x||2

2σ2

Let σ2 = 1. Even though the probability density is high within the
unit ball, the volume of of the unit ball is negligible and hence the
probability mass within the unit ball is negligible.
When the radius is

√
d , the volume becomes large enough to

make the probability mass around the
√
d radius significant.

Even though the volume keeps increasing beyond the
√
d radius,

the probability density keeps diminishing. So, the probability mass
much beyond the

√
d radius is again negligible.
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High Dimension Space
Gaussian annulus theorem

Even though the probability density is high within the unit ball,
the volume of of the unit ball is negligible and hence the
probability mass within the unit ball is negligible.
When the radius is

√
d , the volume becomes large enough to

make the probability mass around the
√
d radius significant.

Even though the volume keeps increasing beyond the
√
d radius,

the probability density keeps diminishing. So, the probability mass
much beyond the

√
d radius is again negligible.

This intuition is formalised in the next theorem.

Theorem (Gaussian Annulus Theorem)

For a d-dimensional spherical Gaussian with unit variance in each
direction, for any β ≤

√
d , all but at most 3e−cβ

2
of the probability

mass lies within the annulus
√
d − β ≤ ||x|| ≤

√
d + β, where c is a

fixed positive constant.
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End
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