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High Dimension Space
Law of Large Numbers

Theorem (Law of large numbers)

Let x1, x2, ..., xn be n independent samples of a random variable x. Then

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤ Var(x)

nε2
.

The above theorem gives a sense of how concentrated the sum of
independent random variables is around the mean value.
Such tail bounds are extremely useful in randomised analysis.
Here is a general theorem for sum of independent random variables.

Theorem (Master tail bounds theorem)

Let x = x1 + ...+ xn, where x1, ..., xn are mutually independent random
variables with zero mean and variance at most σ2. Let 0 ≤ a ≤

√
2nσ2.

Assume that |E(x si )| ≤ σ2(s!) for s = 3, 4, ..., b a2

4nσ2 c. Then

Pr(|x | ≥ a) ≤ 3e−
a2

12nσ2 .
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High Dimension Space
Law of Large Numbers

Theorem (Law of large numbers)

Let x1, x2, ..., xn be n independent samples of a random variable x. Then

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤ Var(x)

nε2
.

Let us try to use the above theorem to get answers to the initial
questions the were raised w.r.t. high dimensional spaces.

The volume of a unit ball goes to zero as dimension goes to infinity.
The volume of a unit ball is concentrated near its surface and is also
concentrated at its equator.
If one generates a random point in d-dimensional space using a
Gaussian to generate coordinates independently, the distance between
all pair of points will mostly be the same when d is large.
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High Dimension Space
Law of Large Numbers

Claim

The volume of a unit ball goes to zero as dimension goes to infinity.

Argument

Let x denote a gaussian random variable with zero mean and variance
1/2π.
Let z denote a d-dimensional random point sampled by taking d
independent copies of x in each coordinate.
Claim 1: The gaussian probability density is bounded below by some
constant throughout the unit ball.
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High Dimension Space
Law of Large Numbers

Claim

The volume of a unit ball goes to zero as dimension goes to infinity.

Argument

Let x denote a gaussian random variable with zero mean and variance
1/2π.
Let z denote a d-dimensional random point sampled by taking d
independent copies of x in each coordinate.
Claim 1: The gaussian probability density is bounded below by some
constant throughout the unit ball.
Claim 2: With high probability ||z||2 = Θ(d).
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High Dimension Space
Law of Large Numbers

Claim

The volume of a unit ball goes to zero as dimension goes to infinity.

Argument

Let x denote a gaussian random variable with zero mean and variance
1/2π.
Let z denote a d-dimensional random point sampled by taking d
independent copies of x in each coordinate.
Claim 1: The gaussian probability density is bounded below by some
constant throughout the unit ball.
Claim 2: With high probability ||z||2 = Θ(d).
So, as d goes to infinity, the probability that z is in the unit ball goes
to 0 (from the Law of large numbers).
This implies that the integral of the probability density function
within the unit ball goes to 0 as d goes to infinity.
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High Dimension Space
Law of Large Numbers

Claim

The volume of a unit ball goes to zero as dimension goes to infinity.

Argument

Let x denote a gaussian random variable with zero mean and variance
1/2π.
Let z denote a d-dimensional random point sampled by taking d
independent copies of x in each coordinate.
Claim 1: The gaussian probability density is bounded below by some
constant throughout the unit ball.
Claim 2: With high probability ||z||2 = Θ(d).
So, as d goes to infinity, the probability that z is in the unit ball goes
to 0 (from the Law of large numbers).
This implies that the integral of the probability density function
within the unit ball goes to 0 as d goes to infinity.
From claim 1, this implies that the volume of the unit ball goes to 0
as d goes to infinity.
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High Dimension Space
Law of Large Numbers

Claim

If one generates a random point in d-dimensional space using a Gaussian
to generate coordinates independently, the distance between all pair of
points will mostly be the same when d is large.

Argument

Consider points y = (y1, ..., yd) and z = (z1, ..., zd) constructed by
sampling yi ’s and zi ’s independently from a zero mean and unit
variance gaussian.
Claim 1: E[(yi − zi )

2] = 2.
Claim 2: ||y − z||2 ≈ 2d with high probability.
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High Dimension Space
Law of Large Numbers

Claim

The volume of a unit ball is concentrated at its equator.

Argument

Consider points y = (y1, ..., yd) and z = (z1, ..., zd) constructed by
sampling yi ’s and zi ’s independently from a zero mean and unit
variance gaussian.
Claim 1: E[(yi − zi )

2] = 2.
Claim 2: ||y − z||2 ≈ 2d with high probability.
Claim 3: ||y||2 ≈ d and ||z||2 ≈ d with high probability.
So, y and z are approximately orthogonal.
Scaling these points to be unit length and calling (scaled) y as the
“north pole”, we see that much of the surface area of the unit ball
must lie near the equator.
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High Dimensional Geometry
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High Dimension Space
High dimensional geometry

Claim

Most of the volume of any high dimensional object is near its surface.

Argument

Consider any object A ∈ Rd and its “shrinked” version
〈1− ε〉A = {(1− ε)x |x ∈ A}.
Claim 1: Volume(〈1− ε〉A) = (1− ε)d · Volume(A).

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



High Dimension Space
High dimensional geometry

Claim

Most of the volume of any high dimensional object is near its surface.

Argument

Consider any object A ∈ Rd and its “shrinked” version
〈1− ε〉A = {(1− ε)x |x ∈ A}.
Claim 1: Volume(〈1− ε〉A) = (1− ε)d · Volume(A).

Partition A into infinitesimal cubes, then 〈1− ε〉A is the union of the
cubes shrinked by a factor of (1− ε).

Corollary

Most of the volume of a unit ball in Rd is contained in an annulus of
width O(1/d) near the boundary.
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High Dimension Space
High dimensional geometry

Claim

The volume of a unit ball in Rd goes to 0 as d goes to infinity.

Theorem (Volume and surface area of unit ball)

The surface area A(d) and the volume V (d) of a unit ball in Rd is given
by:

A(d) =
2πd/2

Γ(d/2)
and V (d) =

2πd/2

d · Γ(d/2)
.

The Γ function (analogous to factorial) is defined recursively as
Γ(x) = (x − 1) · Γ(x − 1), Γ(1) = Γ(2) = 1, and Γ(1/2) =

√
π.
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High Dimension Space
High dimensional geometry

Claim

Most of the volume of a unit ball in Rd is concentrated near its “equator”.
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High Dimension Space
High dimensional geometry

Claim

Most of the volume of a unit ball in Rd is concentrated near its “equator”.

Claim rephrased

For any unit length vector v ∈ Rd defining “north”, most of the volume of
the unit ball lies in the thin slab containing points whose dot product with
v is O(1/

√
d) (that is, the dot product is close to 0).
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High Dimension Space
High dimensional geometry

Claim

For any unit length vector v ∈ Rd defining “north”, most of the volume of
the unit ball lies in the thin slab containing points whose dot product with
v is O(1/

√
d) (that is, the dot product is close to 0).

Argument

Let v be the first coordinate vector. That is, v = (1, 0, 0, ..., 0).
We will argue that most of the volume of the unit ball has
|x1| = O(1/

√
d).

Theorem: For any c ≥ 1 and d ≥ 3, at least a (1− 2
c e
−c2/2) fraction

of the volume of the d-dimensional unit ball has |x1| ≤ c√
d−1 .
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End
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