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Administrative Information

Course Instructor:

Ragesh Jaiswal
Email: rjaiswal@cse.iitd.ac.in

Office: SIT 403

Course Time/Place:

Lectures: TBD

Teaching Assistants: TBD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science



Administrative Information

Grading Scheme
1 Homework + Quiz: 20%
2 Minor: 40% (two minors 20% each)
3 Major: 40%

Homework and Quizzes:

Gradescope: A paperless grading system. Use the course code
948VG9 to register. Please use your formal email address
from IIT Delhi.

Policy on cheating: Students using unfair means will be
severely penalised.
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Administrative Information

Textbooks: We will follow this book available online.
1 Foundations of Data Science by Avrim Blum, John Hoproft,

and Ravindran Kannan.

Course webpage:
http://www.cse.iitd.ac.in/~rjaiswal/2017/COL866/.

The site will contain course information, references, homework,
course slides etc. Please check this page regularly.
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Introduction

Why is a new foundational course in Computer Science
required?

Why doesn’t foundations in Discrete Mathematics, Data
Structures, and Algorithms suffice for modern information
processing?
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Introduction

Why is a new foundational course in Computer Science
required?

Why doesn’t foundations in Discrete Mathematics, Data
Structures, and Algorithms suffice for modern information
processing?

Modern context:

Beyond worst case
Big data

High dimensional data
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High Dimension Space

Our intuition about two or three dimension space does not
usually carry over to larger dimensions.

For example:

The volume of a unit ball goes to zero as dimension goes to
infinity.
The volume of a unit ball is concentrated near its surface and
is also concentrated at its equator.
If one generates a random point in d-dimensional space using
a Gaussian to generate coordinates independently, the distance
between all pair of points will mostly be the same when d is
large.

Gaussian distribution has probability density function:

f (x |µ, σ2) =
1√
2πσ2

· e−
(x−µ)2

2σ2
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High Dimension Space

Our intuition about two or three dimension space does not
usually carry over to larger dimensions.

For example:

The volume of a unit ball goes to zero as dimension goes to
infinity.
The volume of a unit ball is concentrated near its surface and
is also concentrated at its equator.
If one generates a random point in d-dimensional space using
a Gaussian to generate coordinates independently, the distance
between all pair of points will mostly be the same when d is
large.

Gaussian distribution has probability density function:

f (x |µ, σ2) =
1√
2πσ2

· e−
(x−µ)2

2σ2

This follows from the law of large numbers.
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High Dimension Space
Law of Large Numbers

Theorem (Law of large numbers)

Let x1, x2, ..., xn be n independent samples of a random variable x.
Then

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤ Var(x)

nε2
.

We will require the following two simple inequalities from
probability theory.

Theorem (Markov’s inequality)

Let x be a non-negative random variable. Then for a > 0,
Pr[x ≥ a] ≤ E(x)

a .

Theorem (Chebychev’s inequality)

Let x be a random variable. Then for c > 0,
Pr[|x − E(x)| ≥ c] ≤ Var(x)

c2
.
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High Dimension Space
Law of Large Numbers

Theorem (Law of large numbers)

Let x1, x2, ..., xn be n independent samples of a random variable x.
Then

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤ Var(x)

nε2
.

We will require the following two simple inequalities from
probability theory.

Theorem (Markov’s inequality)

Let x be a non-negative random variable. Then for a > 0,
Pr[x ≥ a] ≤ E(x)

a .

Theorem (Chebychev’s inequality)

Let x be a random variable. Then for c > 0,
Pr[|x − E(x)| ≥ c] ≤ Var(x)

c2
.

A few more equalities:
1 For any r.v. x , y , E(x + y) =?.
2 For any r.v. x and any constant c , Var(x − c) =?.
3 For any r.v. x and any constant c , Var(cx) =?.
4 For any independent r.v. x , y , Var(x + y) =?.
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High Dimension Space
Law of Large Numbers

Theorem (Law of large numbers)

Let x1, x2, ..., xn be n independent samples of a random variable x.
Then

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤ Var(x)

nε2
.

We will require the following two simple inequalities from
probability theory.

Theorem (Markov’s inequality)

Let x be a non-negative random variable. Then for a > 0,
Pr[x ≥ a] ≤ E(x)

a .

Theorem (Chebychev’s inequality)

Let x be a random variable. Then for c > 0,
Pr[|x − E(x)| ≥ c] ≤ Var(x)

c2
.

A few more equalities:
1 For any r.v. x , y , E(x + y) = E(x) + E(y).
2 For any r.v. x and any constant c , Var(x − c) = Var(x).
3 For any r.v. x and any constant c , Var(cx) = c2Var(x).
4 For any independent r.v. x , y , Var(x + y) = Var(x) + Var(y).
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High Dimension Space
Law of Large Numbers

Theorem (Law of large numbers)

Let x1, x2, ..., xn be n independent samples of a random variable x. Then

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤ Var(x)

nε2
.

Proof

We have:

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤
Var

(
x1+x2+...+xn

n

)
ε2

=
1

n2ε2
· Var(x1 + ...+ xn)

=
1

n2ε2
· Var(x1) + ...+ Var(xn)

=
Var(x)

nε2
.
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High Dimension Space
Law of Large Numbers

Theorem (Law of large numbers)

Let x1, x2, ..., xn be n independent samples of a random variable x. Then

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤ Var(x)

nε2
.

Proof

We have:

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤
Var

(
x1+x2+...+xn

n

)
ε2

(using Chebychev’s inequality)

=
1

n2ε2
· Var(x1 + ...+ xn)

=
1

n2ε2
· Var(x1) + ...+ Var(xn)

(using independence)

=
Var(x)

nε2
.
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High Dimension Space
Law of Large Numbers

Theorem (Law of large numbers)

Let x1, x2, ..., xn be n independent samples of a random variable x. Then

Pr

[∣∣∣∣x1 + x2 + ...+ xn
n

− E(x)

∣∣∣∣ ≥ ε] ≤ Var(x)

nε2
.

The above theorem gives a sense of how concentrated the sum of
independent random variables is around the mean value.
Such tail bounds are extremely useful in randomised analysis.
Here is a general theorem for sum of independent random variables.

Theorem (Master tail bounds theorem)

Let x = x1 + ...+ xn, where x1, ..., xn are mutually independent random
variables with zero mean and variance at most σ2. Let 0 ≤ a ≤

√
2nσ2.

Assume that |E(x si )| ≤ σ2(s!) for s = 3, 4, ..., b a2

4nσ2 c. Then

Pr(|x | ≥ a) ≤ 3e−
a2

12nσ2 .
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