Name:
Entry number: $\qquad$
There are 2 questions for a total of 10 points.

1. Answer the following questions:
(a) (1 point) State true or false: For every matrix $A \in \mathbb{R}^{n \times d}$, there exists a matrix of rank at most $k$ such that $\|A-B\|_{F} \leq \frac{\|A\|_{F}}{\sqrt{k}}$.
(a) False
(b) (4 points) Give reason for your answer to part (a).

Solution: Consider the following counterexample. Let $A$ be a $5 \times 5$ unit matrix and $k=2$. We have $\frac{\|A\|_{F}}{\sqrt{k}}=\sqrt{5 / 2}$. On the other hand, for any matrix with rank at most 2 we have $\|A-B\|_{F} \geq\left\|A-A_{2}\right\|_{F}=\sqrt{3}$.
2. Answer the following questions:
(a) (1 point) State true or false: For every matrix $A \in \mathbb{R}^{n \times d}$, there exists a matrix of rank at most $k$ such that $\|A-B\|_{2} \leq \frac{\|A\|_{F}}{\sqrt{k}}$.
(a) True
(b) (4 points) Give reason for your answer to part (a).

Solution: Let $\sigma_{1} \geq \sigma_{2} \geq \ldots$ be the singular values of $A$. We will use results proved in the class. Let $B=A_{k}$. Then we have: $\|A-B\|_{2}^{2}=\sigma_{k+1}^{2}$. So, we have $k \cdot\|A-B\|_{2}^{2}=k \cdot \sigma_{k+1}^{2}$. This gives the following:

$$
\begin{aligned}
\|A-B\|_{2}^{2} & =\frac{k \cdot \sigma_{k+1}^{2}}{k} \\
& \leq \frac{\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{k}^{2}}{k} \\
& \leq \frac{\sum_{i} \sigma_{i}^{2}}{k}=\frac{\|A\|_{F}^{2}}{k}
\end{aligned}
$$

So, $\|A-B\|_{2} \leq \frac{\|A\| \|_{F}}{\sqrt{k}}$.

