Name: _____

Entry no.:

There are 4 questions for a total of 50 points.

- 1. Let G be any d-regular graph and let A note the $n \times n$ adjacency matrix of G. Answer the following questions:
 - (a) (5 points) Show that the largest eigenvalue of A is d.
 - (b) (10 points) Let λ₁ ≤ λ₂ ≤ ... ≤ λ_n = d denote the eigenvalues of A. What are the eigenvalue of the adjacency matrix corresponding to the complement graph G. You may express your answer in terms of λ₁, ..., λ_n, d, n.
 (Complement graph: For every i ≠ j, edge (i, j) exists in G iff edge (i, j) is not present in G)
- 2. (7 points) Let \mathcal{H} be a hypothesis class consisting of 3-CNF boolean formulas with n variables and k clauses. For a binary classification problem involving n boolean variables, you are told that the target hypothesis belongs to \mathcal{H} . Your goal is to learn a reasonable hypothesis from a randomly sampled example set S. For a given ε and δ , what is the lower bound on S such that with probability at least (1δ) , any consistent hypothesis has true error at most ε ? (*Hint: All you have to do is estimate the size of* \mathcal{H} *and use the formula that we developed in the class.*)
- 3. (8 points) Let \mathcal{H} be the hypothesis class consisting of boolean formulas in CNF form over n variables. What is the VC dimension of \mathcal{H} ? Give reasons.
- 4. (20 points) What is the VC dimension of circles on a plane (ℝ²)? Give reasons.
 (You may use the fact that any two circles with different centers intersect in at most two points.)