COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find a longest common subsequence in S and T. This is a
longest sequence of characters (not necessarily contiguous) that
appear in both S and T.

o Example § = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find a longest common subsequence in S and T. This is a
longest sequence of characters (not necessarily contiguous) that
appear in both S and T.

o Example S = XYXZPQ, T = YXQYXP

e The longest common subsequence is XYXP
o § = XYXZPQ, T = YXQYXP

@ How do we define the subproblems?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find a longest common subsequence in S and T. This is a
longest sequence of characters (not necessarily contiguous) that
appear in both S and T.

o Example S = XYXZPQ, T = YXQYXP

e The longest common subsequence is XYXP
o § = XYXZPQ, T = YXQYXP

o Let L(/,j) denote the length of the longest common subsequence
in strings S[1], ..., S[i] and T[1],..., T[j].
e What is L(1,)) for 1 < j < m?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find a longest common subsequence in S and T. This is a
longest sequence of characters (not necessarily contiguous) that
appear in both S and T.

o Example S = XYXZPQ, T = YXQYXP
e The longest common subsequence is XYXP
e S = XYXZPQ, T = YXQYXP
o Let L(/,j) denote the length of the longest common subsequence
in strings S[1],..., S[i] and T[1],..., T[j].
o What is L(1,)) for 1 <j < m?
o 1if S[1] is present in the string T[1],..., T[j], O otherwise.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find a longest common subsequence in S and T. This is a
longest sequence of characters (not necessarily contiguous) that
appear in both S and T.

o Example S = XYXZPQ, T = YXQYXP
e The longest common subsequence is XYXP
o S = XYXZPQ, T = YXQYXP
o Let L(/,j) denote the length of the longest common subsequence
in strings S[1], ..., S[i] and T[1],..., T[j].
o What is L(1,)) for 1 <j < m?
o 1if S[1] is present in the string T[1],..., T[j], O otherwise.
o 1if S[1] = T[] else L(1,j) = L(1,j — 1) (with L(1,0) = 0)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

o Example S = XYXZPQ, T = YXQYXP
e The longest common subsequence is XYXP
e S = XYXZPQ, T = YXQYXP
o Let L(/,j) denote the length of the longest common subsequence
in strings S[1], ..., S[i] and T[1],..., T[j].
e What is L(1,)) for 1 <j < m?
o 1if S[1] is present in the string T[1],..., T[], O otherwise.
o 1if S[1] = T[] else L(1,j) = L(1,j — 1) (with L(1,0) = 0)
o Similarly, we can define L(i,1) for 1 < i < n.
o Can we say something similar for L(i,j) for i,j # 17

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

o Example S = XYXZPQ, T = YXQYXP
e The longest common subsequence is XYXP
e S = XYXZPQ, T = YXQYXP
o Let L(/,j) denote the length of the longest common subsequence
in strings S[1], ..., S[i] and T[1],..., T[j].
e What is L(1,)) for 1 <j < m?
o 1if S[1] is present in the string T[1],..., T[], O otherwise.
o 1if S[1] = T[] else L(1,j) = L(1,j — 1) (with L(1,0) = 0)
o Similarly, we can define L(i,1) for 1 < i < n.
e Can we say something similar for L(i,) for i,j # 1?7
o Claim 1: If S[i] = T[j], then L(i,j) =1+ L(i —1,j —1).
o Claim 2: If S[i] # T[], then L(i,j) = max {L(i — 1,j), L(i,j — 1)}.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming

Longest common subsequence

e What is L(1,j) for 1 < j < m?
o 1if S[1] is present in the string T[1],..., T[], O otherwise.
o 1if S[1] = T[j] else L(1,j) = L(L,j — 1) (with L(1,0) = 0)
@ Similarly, we can define L(i,1) for 1 < i< n.
o Can we say something similar for L(i,) for i,j # 1?7
Claim 1: If S[i] = T[], then L(i,j) = 1+ L(i — 1,j — 1).
Claim 2: If S[i] # T[], then L(i,j) = max {L(i — 1,/), L(i,j — 1)}

L [|

. 3

A

|

Figure: The arrows show the dependencies between subproblems.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming

Longest common subsequence

Length-LCS(S, T)

- If (S[1] = T[1]), then L[1,1] < 1 else L[1,1] +- 0
-Forj=2tom

- If (S[1] = T[j]), then L[1,/] < 1 else L[1,] + L[1,j —1]
-Fori=2ton

- If (S[i] = TI[1]), then L[i,1] <~ 1 else L[i,1] - L[i —1,1]
-Fori=2ton

-Forj=2tom

- If (S[i] = T[j]) then L[i,j] < 1+ L[i —1,j — 1]
else L[i,j] + max {L[i —1,/], L[i,j — 1]}

- Return(L[n, m])

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming

Longest common subsequence

Length-LCS(S, T)

- If (S[1] = T[1]), then L[1,1] - 1 else L[1,1] +- 0
-Forj=2tom

- If (S[1] = T[j]), then L[1,/] < 1 else L[1,] + L[1,j —1]
-Fori=2ton

- If (S[i] = TI[1]), then L[i,1] +- 1 else L[i,1] - L[i — 1,1]
-Fori=2ton

-Forj=2tom

- If (S[i] = T[j]) then L[i,j] < 1+ L[i —1,j — 1]
else L[i,j] < max {L[i —1,/], L[i,j — 1]}

- Return(L[n, m])

@ What is the running time of the above table-filling algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming

Longest common subsequence

Length-LCS(S, T)

- If (S[1] = T[1]), then L[1,1] - 1 else L[1,1] +- 0
-Forj=2tom

- If (S[1] = T[j]), then L[1,/] < 1 else L[1,] + L[1,j —1]
-Fori=2ton

- If (S[i] = TI[1]), then L[i,1] +- 1 else L[i,1] - L[i — 1,1]
-Fori=2ton

-Forj=2tom

- If (S[i] = T[j]) then L[i,j] < 1+ L[i —1,j — 1]
else L[i,j] < max {L[i —1,/], L[i,j — 1]}

- Return(L[n, m])

@ What is the running time of the above table-filling algorithm?
O(nm)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming

Longest common subsequence

@ How do we find a longest common subsequence?

P

O 30 O -

Figure: Array P is used to maintain the pointers to the appropriate
subproblem. The blue squares give the position of the characters in a longest
common subsequence.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

@ Example: § = XYXZPQ, T = YXQYXP

0 1 1 1 1 1 .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

@ Example: § = XYXZPQ, T = YXQYXP

0 1 1 1 1 1 .

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

o Example: § = XYXZPQ, T = YXQYXP

0 1 1 1 1 1
[

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

@ Example: § = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

@ Example: § = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

@ Example: § = XYXZPQ, T = YXQYXP

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

Problem

Let S and T be strings of characters. S is of length n and T is of
length m. Find a longest common subsequence in S and T. This is a
longest sequence of characters (not necessarily contiguous) that
appear in both S and T.

e Claim 1: If i=0o0rj =0, then L(i,j) = 0.
o Claim 2: If S[i] = T[], then L(i,j) = 1+ L(i — 1,j — 1),
e Claim 3: If S[i] # T|j], then

L(i,j) = max{L(i —1,j),L(i,j —1)}.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Longest common subsequence
e Claim 1: If i=0o0rj =0, then L(i,j) = 0.
o Claim 2: If S[i] = T[j], then L(i,j) =1+ L(i—1,j—1).
e Claim 3: If S[i] # T[j], then
L(i,j) = max{L(i —1,j),L(i,j —1)}.
@ Here is a simple recursive program to find the length of the
longest common subsequence.

Algorithm

LCS-rec(S,n, T, m)
- If (n =10 OR m = 0) then return(0)
- If (S[n] = S[m]) return(1l 4+ LCS-rec(S,n—1,T,m—1))
- I (S[n] # T[m])
return(max{LCS-rec(S,n, T,m — 1), LCS-rec(S,n—1, T, m)})

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

Algorithm

LCS-rec(S,n, T, m)
- If (n =10 OR m = 0) then return(0)
- If (S[n] = S[m]) return(1 + LCS-rec(S,n—1,T,m—1))
I (S[n] # TIm])
return(max{LCS-rec(S,n, T,m — 1), LCS-rec(S,n—1, T, m)})

@ What is the running time of this algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

Algorithm

LCS-rec(S,n, T, m)
- If (n =10 OR m = 0) then return(0)
- If (S[n] = S[m]) return(1 + LCS-rec(S,n—1,T,m—1))
I (S[n] # TIm])
return(max{LCS-rec(S,n, T,m — 1), LCS-rec(S,n—1, T, m)})

@ What is the running time of this algorithm?
e This is exponentially large!

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest common subsequence

Algorithm

LCS-rec(S,n, T, m)
- If (n =0 OR m = 0) then return(0)
- If (S[n] = S[m]) return(1 + LCS-rec(S,n—1,T,m—1))
- If (S[n] # T[m])
return(max{LCS-rec(S,n, T,m — 1), LCS-rec(S,n—1,T,m)})

@ Here is a memoized version of the above algorithm.

Algorithm
LCS-mem (S, n, T, m)
- If (n =0 OR m = 0) then return(0)
- If (L[n, m] is known) then return(L[n, m])
- If (S[n] = S[m)
- length < 1 + LCS-mem(S,n—1, T, m— 1)
- I (S[n] # T[m])
- length < max{LCS-mem(S,n, T,m — 1),
LCS-mem(S,n—1, T, m)}
- L[n, m] + length
- return(length)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming

Longest common subsequence

@ Here is a memoized version of the recursive algorithm.

LCS-mem (S, n, T, m)
- If (n =10 OR m = 0) then return(0)
- If (L[n, m] is known) then return(L[n, m])
- IF (S[n] = S[m))
- length < 1 + LCS-mem(S,n—1, T, m— 1)
- IF (S[n] # T{m])
- length < max{LCS-mem(S,n, T,m — 1),
LCS-mem(S,n—1, T, m)}

- L[n, m] < length
- return(length)

@ What is the running time of the above algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming

Longest common subsequence

@ Here is a memoized version of the recursive algorithm.

LCS-mem (S, n, T, m)
- If (n =10 OR m = 0) then return(0)
- If (L[n, m] is known) then return(L[n, m])
- IF (S[n] = S[m))
- length < 1 + LCS-mem(S,n— 1, T, m— 1)
- IF (S[n] # T{m])
- length < max{LCS-mem(S,n, T,m — 1),
LCS-mem(S,n—1,T,m)}

- L[n, m] < length
- return(length)

@ What is the running time of the above algorithm? O(nm)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

End)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

