
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Course Overview

Basic graph algorithms

Algorithm Design Techniques:

Greedy Algorithms
Divide and Conquer
Dynamic Programming
Network Flows

Computational Intractability

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Introduction

You have already seen multiple examples of Divide and
Conquer algorithms:

Binary Search
Merge Sort
Quick Sort
Multiplying two n-bit numbers in O

(
nlog2 3

)
time.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Main Idea

Main Idea: Divide the input into smaller parts. Solve the
smaller parts and combine their solution.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers,
A[1],A[2], ...,A[n] output the number of pairs (i , j) such that i < j
and A[i] > A[j]. Such pairs are called inversions.

Example: Consider the integers sequence A = [7, 2, 8, 3, 4, 1, 9, 10]
What is the total number of inversions?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers,
A[1],A[2], ...,A[n] output the number of pairs (i , j) such that i < j
and A[i] > A[j]. Such pairs are called inversions.

Example: Consider the integers sequence A = [7, 2, 8, 3, 4, 1, 9, 10]
What is the total number of inversions? 10

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers,
A[1],A[2], ...,A[n] output the number of pairs (i , j) such that i < j
and A[i] > A[j]. Such pairs are called inversions.

Näıve algorithm: Check A[i],A[j] for all pairs i < j .
Running time of the näıve algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers,
A[1],A[2], ...,A[n] output the number of pairs (i , j) such that i < j
and A[i] > A[j]. Such pairs are called inversions.

Näıve algorithm: Check A[i],A[j] for all pairs i < j .
Running time of the näıve algorithm? O(n2)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers,
A[1],A[2], ...,A[n] output the number of pairs (i , j) such that i < j
and A[i] > A[j]. Such pairs are called inversions.

Divide and conquer strategy:

Divide the array into two parts AL and AR

Count the number of inversions cL in AL

Count the number of inversions cR in AR

Count the number of inversions cLR across AL and AR

Output cL + cR + cLR

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers,
A[1],A[2], ...,A[n] output the number of pairs (i , j) such that i < j
and A[i] > A[j]. Such pairs are called inversions.

Divide and conquer strategy:

Divide the array into two parts AL and AR

Count the number of inversions cL in AL

Count the number of inversions cR in AR

Count the number of inversions cLR across AL and AR

Output cL + cR + cLR
How much time does it take to find the number of inversions
across AL and AR?

If we can do this in O(n) time, then the recurrence relation for the
running time will be T (n) ≤ 2 · T (n/2) + cn.
The solution for the above is T (n) = O(n log n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers,
A[1],A[2], ...,A[n] output the number of pairs (i , j) such that i < j
and A[i] > A[j]. Such pairs are called inversions.

Divide and conquer strategy:

Divide the array into two parts AL and AR

Count the number of inversions cL in AL

Count the number of inversions cR in AR

Count the number of inversions cLR across AL and AR

Output cL + cR + cLR
How much time does it take to find the number of inversions
across AL and AR?

Suppose we have sorted AL and AR , how much time does it take
to count the inversions across AL and AR?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers,
A[1],A[2], ...,A[n] output the number of pairs (i , j) such that i < j
and A[i] > A[j]. Such pairs are called inversions.

Divide and conquer strategy:

Divide the array into two parts AL and AR

Count the number of inversions cL in AL

Count the number of inversions cR in AR

Count the number of inversions cLR across AL and AR

Output cL + cR + cLR
How much time does it take to find the number of inversions
across AL and AR?

Suppose we have sorted AL and AR , how much time does it take
to count the inversions across AL and AR? O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Problem

Counting inversions: Given a sequence of distinct integers,
A[1],A[2], ...,A[n] output the number of pairs (i , j) such that i < j
and A[i] > A[j]. Such pairs are called inversions.

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0,A)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0,A)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0,A)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0,A)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0,A)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0,A)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0,A)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Divide and Conquer
Counting Inversions

Algorithm

SortCountInversions(A)
- if (|A| = 1)return(0)
- Let AL ← A[1]...A[n/2]
- Let AR ← A[n/2 + 1]...A[n]
- (cL,BL)← SortCountInversions(AL)

- (cR ,BR)← SortCountInversions(AR)

- (cLR ,B)← MergeCount(BL,BR)

- return((cL + cR + cLR),B)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Course Overview

Graph Algorithms

Algorithm Design Techniques:

Greedy Algorithms
Divide and Conquer
Dynamic Programming
Network Flows

Computational Intractability

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Main Ideas

Main idea: Break the given problem in to a few sub-problems
and combine the solutions of the smaller sub-problems to get
solutions to larger ones.

How is it different than Divide and Conquer?

Here you are allowed overlapping sub-problems.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Main Ideas

Main idea: Break the given problem in to a few sub-problems
and combine the solutions of the smaller sub-problems to get
solutions to larger ones.

How is it different than Divide and Conquer?

Here you are allowed overlapping sub-problems.

Suppose your recursive algorithm gives a recursion tree that
has many common sub-problems (e.g., recursion for
computing Fibonacci numbers), then it helps to save the
solution of sub-problems and use this solution whenever the
same sub-problem is called.

Dynamic programming algorithms are also called table-filling
algorithms

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Dynamic Programming
Longest increasing subsequence

Problem

Longest increasing subsequence: You are given a sequence of
integers A[1],A[2], ...,A[n] and you are asked to find a longest
increasing subsequence of integers.

Example: The longest increasing subsequence of the sequence
(7, 2, 8, 6, 3, 6, 9, 7) is ?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

