COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Balanced Binary Search Trees )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Binary Search Trees

o Consider the following implementation:

class Node{
public int key;
public String value;
public Node leftChild;
public Node rightChild;
public Node parent;

}

public class BST{
public int size;
public Node root;
public BST(){

size = 0;root = null;

}

public boolean isLeaf(Node N){//To be written}
public String get(int k){//To be written}

public void put(int k, String v){//To be written}
public void remove(int k){//To be written}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms




Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #2

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #3

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees

@ Tri-node restructuring for a node x, its parent y, and its
grandparent z.

Figure : Case #4

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees
@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the

heights of its children differ by at most 1.
e Claim: The height of any AVL tree storing n nodes is O(log n).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:

Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

@ Question: How do we perform get (k) operation on an AVL tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

@ Question: How do we perform get (k) operation on an AVL tree?
The same as BST

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

@ Question: How do we perform put(k, v) operation on an AVL
tree?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

@ Question: How do we perform put (k, v) operation on an AVL
tree?

e Same as in BST. However, you also have to make sure that after
insertion, the height balance property is maintained.
o Consider inserting an entry with key 32 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

@ AVL Tree: An AVL tree is a binary search tree that satisfies the
following property:
Height balance property: For every internal node of the tree, the
heights of its children differ by at most 1.

o Question: How do we perform put (k, v) operation on an AVL
tree?

e Same as in BST. However, you also have to make sure that after
insertion, the height balance property is maintained.
o Consider inserting an entry with key 32 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

@ Question: How do we perform put(k, v) operation on an AVL
tree?

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Figure : Suppose the insertion happens in the right sub-tree of node labeled
X.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Figure : Suppose the insertion happens in T3 and x, y, z are as defined in
the pseudocode.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Figure : Suppose the insertion happens in T3 and x, y, z are as defined in
the pseudocode.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x,y, z.

Figure : Suppose the insertion happens in T3 and x, y, z are as defined in
the pseudocode. For some h the height of the nodes before insertion will be
as shown above.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x, y, z.

Figure : The height of the nodes after inserting the new node are as shown
above.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

Algorithm

//p denotes the node that is inserted.
BalanceAfterPut (Node p)
- While going up from p, let z denote the first node for which
the height balance property is not satisfied.
- Let y be the child of z with greater height.
- Let x be the child of y with greater height.
- Perform a tri-node restructuring w.r.t. nodes x,y, z.

Figure : The height of the nodes after inserting and performing tri-node
restructuring.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

@ Question: How do we perform remove (k) operation on an AVL
tree?

e Same as in BST. However, you also have to make sure that after
deletion, the height balance property is maintained.
o Consider deleting the entry with key 20 in the Tree below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

@ Question: How do we perform remove (k) operation on an AVL
tree?
e Same as in BST. However, you also have to make sure that after
deletion, the height balance property is maintained.
o Consider deleting the entry with key 20 in the Tree below.

Figure : The tree needs to be balanced.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

@ Question: How do we perform remove (k) operation on an AVL
tree?

Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove (Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:
If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z.
- Perform Tri-node restructuring w.r.t. x,y, z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.
- If b is not the root, then BalanceAfterRemove (b.parent)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms




Data Structures

Balanced Binary Search Trees — AVL Trees

//Initially p denotes the parent of the removed node
BalanceAfterRemove (Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:
If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z.
- Perform Tri-node restructuring w.r.t. x,y,z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.
- If b is not the root, then BalanceAfterRemove (b.parent)

Figure : The tree needs to be balanced.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Balanced Binary Search Trees — AVL Trees

Alg m Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove (Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:
If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z.
- Perform Tri-node restructuring w.r.t. x,y,z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.
- If b is not the root, then BalanceAfterRemove (b.parent)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

//Initially p denotes the parent of the removed node
BalanceAfterRemove (Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:
If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z.
- Perform Tri-node restructuring w.r.t. x,y,z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.
- If b is not the root, then BalanceAfterRemove (b.parent)

Figure : Suppose a node is deleted from T1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees
Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove (Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:
If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z.
- Perform Tri-node restructuring w.r.t. x,y,z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.
- If b is not the root, then BalanceAfterRemove (b.parent)

Figure : Suppose a node is deleted from T1.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

//Initially p denotes the parent of the removed node
BalanceAfterRemove (Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:
If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z.
- Perform Tri-node restructuring w.r.t. x,y,z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.
- If b is not the root, then BalanceAfterRemove (b.parent)

Figure : Suppose a node is deleted from T1. One possible scenario for
heights before deletion.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees
Algorithm Sketch

//Initially p denotes the parent of the removed node
BalanceAfterRemove (Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:
If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z.
- Perform Tri-node restructuring w.r.t. x,y,z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.
- If b is not the root, then BalanceAfterRemove (b.parent)

Figure : Suppose a node is deleted from T1. Heights after deletion.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Balanced Binary Search Trees — AVL Trees

//Initially p denotes the parent of the removed node
BalanceAfterRemove (Node p)
- Let z be the first unbalanced node going up from p
- If no such z exists then return
- Let y be the child of z of greater height.
- Let x be the child of y defined as follows:
If one child of y is taller than the other then x is the
taller child, otherwise x is the child of y with the same
side as y is of z.
- Perform Tri-node restructuring w.r.t. x,y,z
- Let b denote the tallest node (among the nodes involved
in restructuring) after the restructuring.
- If b is not the root, then BalanceAfterRemove (b.parent)

Figure : Suppose a node is deleted from T1. Heights after tri-node
restructuring.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



