
COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Tree

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Tree → Binary Tree

A binary tree is a an ordered tree where all the nodes have at
most two children.
Each node is either is labeled as either being a left child or a right
child.
A binary tree is proper if each internal node has exactly two
children or improper otherwise.
For any given binary tree T , let:

N denote the number of nodes in the T .
L denote the number of external nodes (or leaves) in T .
I denote the number of internal nodes in T .
H denote the height of T . Height of a tree is equal to the height
of the root.

Show that:
1 H + 1 ≤ N ≤ 2H+1 − 1
2 1 ≤ L ≤ 2H

3 H ≤ I ≤ 2H − 1
4 log (N + 1)− 1 ≤ H ≤ N − 1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Tree → Binary Tree

A binary tree is a an ordered tree where all the nodes have at
most two children.
Each node is either is labeled as either being a left child or a right
child.
A binary tree is proper if each internal node has exactly two
children or improper otherwise.
For any given binary tree T , let:

N denote the number of nodes in the T .
L denote the number of external nodes (or leaves) in T .
I denote the number of internal nodes in T .
H denote the height of T . Height of a tree is equal to the height
of the root.

Show that:
1 H + 1 ≤ N ≤ 2H+1 − 1
2 1 ≤ L ≤ 2H

3 H ≤ I ≤ 2H − 1
4 log (N + 1)− 1 ≤ H ≤ N − 1
5 The number of edges is equal to (N − 1).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Tree → Binary Tree

Here is a high-level java implementation of a Binary Tree.

Code

public class Node{
int value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){

leftChild = rightChild = parent = null;
}
}
public class BinaryTree{

Node root;
public BinaryTree(){

root = null;
}
public int computeHeight(Node v){

//To be written
}
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Tree → Binary Tree

Here is a high-level java implementation of a Binary Tree.

Code

public class Node{
int value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){

leftChild = rightChild = parent = null;
}
}
public class BinaryTree{

Node root;
public BinaryTree(){

root = null;
}
public int computeHeight(Node v){

//To be written
}
}

public int computeDepth(Node v){
//To be written

}
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Tree → Binary Tree

For the context of Binary trees there is another way of tree
traversal (other than pre-order and post-order) called in-order
traversal.
Consider the in-order tree traversal method below. This method
traverses the tree rooted at node N.

In-order traversal method

public void InOrderTraversal(Node N){
if(N.leftChild != null)InOrderTraversal(N.leftChild);
System.out.println(N.value);
if(N.rightChild != null)InOrderTraversal(N.rightChild);
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Tree → Binary Tree

For the context of Binary trees there is another way of tree
traversal (other than pre-order and post-order) called in-order
traversal.
Consider the in-order tree traversal method below. This method
traverses the tree rooted at node N.

In-order traversal method

public void InOrderTraversal(Node N){
if(N.leftChild != null)InOrderTraversal(N.leftChild);
System.out.println(N.value);
if(N.rightChild != null)InOrderTraversal(N.rightChild);
}

Question: Produce the output of the above method call when
given the root node of the tree below as the input.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Heaps and Priority Queues

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

We looked at the Queue ADT which implements a queue that
allows adding and removal of elements according to the FIFO
principle.

Such a data structure made sense when automating a queue
at a Doctor’s office where the FIFO principle is the basic
requirement.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

We looked at the Queue ADT which implements a queue that
allows adding and removal of elements according to the FIFO
principle.

Such a data structure made sense when automating a queue
at a Doctor’s office where the FIFO principle is the basic
requirement.

Suppose we want to automate the Prime Minister’s office
meetings.

Each person has a priority (this can be an integer value).
We need to add people interested in meeting the PM.
The next person to meet the PM should be the person with
the highest priority.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Suppose we want to automate the Prime Minister’s office
meetings.

Each person has a priority (this can be an integer value).
We need to add people interested in meeting the PM.
The next person to meet the PM should be the person with
the highest priority.

The ADT needed to perform the above task is called a
Priority Queue and it supports the following operations:

insert(k , v): Add an entry with key k and value v
min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.
removeMin(): Removes and returns the entry (k , v) having
smallest key; it returns null if there are no entries.
size(): returns the number of entries.
isEmpty(): returns true if there are no entries else returns
false.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Priority Queue ADT supports the following operations:

insert(k , v): Add an entry with key k and value v
min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.
removeMin(): Removes and returns the entry (k , v) having
smallest key; it returns null if there are no entries.
size(): returns the number of entries.
isEmpty(): returns true if there are no entries else returns
false.

Suppose we implement priority queue using a linked list. What
is the running time for each of the following operations:

insert(k , v):
min():
removeMin():

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Priority Queue ADT supports the following operations:

insert(k , v): Add an entry with key k and value v
min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.
removeMin(): Removes and returns the entry (k , v) having
smallest key; it returns null if there are no entries.
size(): returns the number of entries.
isEmpty(): returns true if there are no entries else returns
false.

Suppose we implement priority queue using a linked list.
What is the running time for each of the following operations
(the element is added at the head):

insert(k , v): O(1)
min(): O(n)
removeMin(): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Priority Queue ADT supports the following operations:

insert(k , v): Add an entry with key k and value v
min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.
removeMin(): Removes and returns the entry (k , v) having
smallest key; it returns null if there are no entries.
size(): returns the number of entries.
isEmpty(): returns true if there are no entries else returns
false.

Suppose we implement priority queue using an array. What is
the running time for each of the following operations:

insert(k , v):
min():
removeMin():

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Priority Queue ADT supports the following operations:
insert(k , v): Add an entry with key k and value v
min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.
removeMin(): Removes and returns the entry (k , v) having
smallest key; it returns null if there are no entries.
size(): returns the number of entries.
isEmpty(): returns true if there are no entries else returns
false.

Suppose we implement priority queue using an array. What is
the running time for each of the following operations (the new
entry is added at the end):

insert(k , v): O(1)
min(): O(n)
removeMin(): O(n)

How about if we keep the array sorted (in non-increasing
order)?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Priority Queue ADT supports the following operations:

insert(k , v): Add an entry with key k and value v
min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.
removeMin(): Removes and returns the entry (k , v) having
smallest key; it returns null if there are no entries.
size(): returns the number of entries.
isEmpty(): returns true if there are no entries else returns
false.

There is a data structure called heap where the running time
of the operations are:

insert(k , v): O(log n)
min(): O(1)
removeMin(): O(log n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

(Minimum) Heap: A (minimum) Heap is a binary tree that
stores entries at its nodes and satisfies the following two
properties:

1 Heap-order property: for every node p other than the root
node, the key stored at p is greater than equal to the key
stored at p’s parent.

2 Complete binary tree property: it is a complete binary tree.

Complete binary tree: A binary tree with height h is a
complete binary tree iff levels 0, 1, ..., h − 1 have maximum
number of nodes possible (i.e., 1, 2, 22, ..., 2h−1) and the
remaining nodes at level h reside in the leftmost possible
position.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

(Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:

1 Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p’s
parent.

2 Complete binary tree property: it is a complete binary tree.

Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0, 1, ..., h − 1 have maximum number of nodes
possible (i.e., 1, 2, 22, ..., 2h−1) and the remaining nodes at level h
reside in the leftmost possible position.

Is this a min-heap?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

(Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:

1 Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p’s
parent.

2 Complete binary tree property: it is a complete binary tree.

Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0, 1, ..., h − 1 have maximum number of nodes
possible (i.e., 1, 2, 22, ..., 2h−1) and the remaining nodes at level h
reside in the leftmost possible position.

Is this a min-heap? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

(Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:

1 Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p’s
parent.

2 Complete binary tree property: it is a complete binary tree.

Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0, 1, ..., h − 1 have maximum number of nodes
possible (i.e., 1, 2, 22, ..., 2h−1) and the remaining nodes at level h
reside in the leftmost possible position.

Is this a min-heap?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

(Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:

1 Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p’s
parent.

2 Complete binary tree property: it is a complete binary tree.

Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0, 1, ..., h − 1 have maximum number of nodes
possible (i.e., 1, 2, 22, ..., 2h−1) and the remaining nodes at level h
reside in the leftmost possible position.

Is this a min-heap? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

(Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:

1 Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p’s
parent.

2 Complete binary tree property: it is a complete binary tree.

Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0, 1, ..., h − 1 have maximum number of nodes
possible (i.e., 1, 2, 22, ..., 2h−1) and the remaining nodes at level h
reside in the leftmost possible position.

Is this a min-heap?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

(Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:

1 Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p’s
parent.

2 Complete binary tree property: it is a complete binary tree.

Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0, 1, ..., h − 1 have maximum number of nodes
possible (i.e., 1, 2, 22, ..., 2h−1) and the remaining nodes at level h
reside in the leftmost possible position.

Is this a min-heap? Yes

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

(Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:

1 Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p’s
parent.

2 Complete binary tree property: it is a complete binary tree.

Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0, 1, ..., h − 1 have maximum number of nodes
possible (i.e., 1, 2, 22, ..., 2h−1) and the remaining nodes at level h
reside in the leftmost possible position.

Question: Show that any heap with n nodes has height
h = blog nc.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.

Code

public class Node{
int key;
String value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){

leftChild = rightChild = parent = null;
}
}
public class MinHeap{

Node root;
public MinHeap(){

root = null;
}
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.

Code

public class Node{
int key;
String value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){

leftChild = rightChild = parent = null;
}
}
public class MinHeap{

Node root;
public MinHeap(){

root = null;
}
}

Question: How do we implement min()?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?

Suppose we want to insert (2,T ) in the heap below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?

Consider inserting (2,T ) in the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?

Consider inserting (2,T ) in the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?

Consider inserting (2,T ) in the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?

Consider inserting (2,T ) in the heap.

This process is called up-heap bubbling.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?
Question: How do we implement removeMin()?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?
Question: How do we implement removeMin()?

Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?
Question: How do we implement removeMin()?

Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?
Question: How do we implement removeMin()?

Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?
Question: How do we implement removeMin()?

Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?
Question: How do we implement removeMin()?

Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k, v)?
Question: How do we implement removeMin()?

Consider removing the entry with the minimum key from the heap.

This process is called down-heap bubbling.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Let us write the methods for the pointer based implementation.

Code

public class Node{
int key;
String value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){

leftChild = rightChild = parent = null;
}
}
public class MinHeap{

Node root;
Node lastNode;
public MinHeap(){

root = lastNode = null;
}
}
public String min(){//To be written}
public void insert(int k, String v){//To be written}
public String removeMin(){//To be written}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Let us write the methods for the pointer based
implementation.

What is the running time of each operation:

min():
insert(k, v):
removeMin():

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Let us write the methods for the pointer based
implementation.

What is the running time of each operation:

min(): O(1)
insert(k, v): O(log n)
removeMin(): O(log n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms


