COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Tree )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Tree — Binary Tree

@ A binary tree is a an ordered tree where all the nodes have at
most two children.

@ Each node is either is labeled as either being a left child or a right
child.

@ A binary tree is proper if each internal node has exactly two
children or improper otherwise.
@ For any given binary tree T, let:
e N denote the number of nodes in the T.
o L denote the number of external nodes (or leaves) in T.
o [ denote the number of internal nodes in T.
e H denote the height of T. Height of a tree is equal to the height
of the root.
@ Show that:
O H+1<N<2H 1
@1<L<2H

@ H<I<?2" -1
@ log(N+1)—1<H<N-1

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Tree — Binary Tree
@ A binary tree is a an ordered tree where all the nodes have at
most two children.
@ Each node is either is labeled as either being a left child or a right
child.
@ A binary tree is proper if each internal node has exactly two

children or improper otherwise.
@ For any given binary tree T, let:

N denote the number of nodes in the T.

o L denote the number of external nodes (or leaves) in T.
e / denote the number of internal nodes in T.
e H denote the height of T. Height of a tree is equal to the height
of the root.
@ Show that:
@ Hrl1<N<2Ht1_1
@1<L<2H

@ H<i<2H—1
Q log(N+1)-1<H<N-1
@ The number of edges is equal to (N — 1).

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Tree — Binary Tree

@ Here is a high-level java implementation of a Binary Tree.

public class Node{
int value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){
leftChild = rightChild = parent = null;
}
}

public class BinaryTree{
Node root;
public BinaryTree(){
root = null;
}
public int computeHeight(Node v){
// To be written
}
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms




Data Structures

Tree — Binary Tree

@ Here is a high-level java implementation of a Binary Tree.

public class Node{
int value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){
leftChild = rightChild = parent = null;
}
}
public class BinaryTree{
Node root;
public BinaryTree(){
root = null;

public int computeHeight(Node v){
// To be written
}

}

public int computeDepth(Node v){
// To be written

}
Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms




Data Structures
Tree — Binary Tree

@ For the context of Binary trees there is another way of tree
traversal (other than pre-order and post-order) called in-order

traversal.
@ Consider the in-order tree traversal method below. This method

traverses the tree rooted at node N.

In-order traversal method

public void InOrderTraversal(Node N){
if(N.leftChild != null)InOrderTraversal (N.leftChild) ;

System.out.printIn(N.value);
if(N.rightChild != null)InOrderTraversal (N.rightChild);

}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Tree — Binary Tree

@ For the context of Binary trees there is another way of tree
traversal (other than pre-order and post-order) called in-order

traversal.
o Consider the in-order tree traversal method below. This method

traverses the tree rooted at node N.

In-order traversal method

public void InOrderTraversal(Node N){
if(N.leftChild != null)InOrderTraversal (N.leftChild) ;
System.out.printin(N.value);
if(N.rightChild != null)InOrderTraversal (N.rightChild) ;

}

@ Question: Produce the output of the above method call when
given the root node of the tree below as the input.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures: Heaps and Priority Queues )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ We looked at the Queue ADT which implements a queue that
allows adding and removal of elements according to the FIFO
principle.

@ Such a data structure made sense when automating a queue
at a Doctor’s office where the FIFO principle is the basic
requirement.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ We looked at the Queue ADT which implements a queue that
allows adding and removal of elements according to the FIFO
principle.

@ Such a data structure made sense when automating a queue
at a Doctor’s office where the FIFO principle is the basic
requirement.

@ Suppose we want to automate the Prime Minister's office
meetings.

e Each person has a priority (this can be an integer value).

e We need to add people interested in meeting the PM.

e The next person to meet the PM should be the person with
the highest priority.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ Suppose we want to automate the Prime Minister’s office
meetings.
e Each person has a priority (this can be an integer value).
e We need to add people interested in meeting the PM.
e The next person to meet the PM should be the person with
the highest priority.
@ The ADT needed to perform the above task is called a
Priority Queue and it supports the following operations:
e insert(k,v): Add an entry with key k and value v
e min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.
o removeMin(): Removes and returns the entry (k, v) having
smallest key; it returns null if there are no entries.
e size(): returns the number of entries.
e isEmpty(): returns true if there are no entries else returns
false.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ Priority Queue ADT supports the following operations:

e insert(k,v): Add an entry with key k and value v

e min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.

o removeMin(): Removes and returns the entry (k, v) having
smallest key; it returns null if there are no entries.

e size(): returns the number of entries.

e isEmpty(): returns true if there are no entries else returns
false.

@ Suppose we implement priority queue using a linked list. What
is the running time for each of the following operations:
e insert(k,v):
e min():
e removeMin():

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ Priority Queue ADT supports the following operations:

e insert(k,v): Add an entry with key k and value v

e min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.

e removeMin(): Removes and returns the entry (k, v) having
smallest key; it returns null if there are no entries.

e size(): returns the number of entries.

e isEmpty(): returns true if there are no entries else returns
false.

@ Suppose we implement priority queue using a linked list.
What is the running time for each of the following operations
(the element is added at the head):

e insert(k,v): O(1)
e min(): O(n)

e removeMin(): O(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ Priority Queue ADT supports the following operations:

e insert(k,v): Add an entry with key k and value v

e min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.

o removeMin(): Removes and returns the entry (k, v) having
smallest key; it returns null if there are no entries.

e size(): returns the number of entries.

e isEmpty(): returns true if there are no entries else returns
false.

@ Suppose we implement priority queue using an array. What is
the running time for each of the following operations:
e insert(k,v):
e min():
e removeMin():

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ Priority Queue ADT supports the following operations:

e insert(k,v): Add an entry with key k and value v

o min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.

e removeMin(): Removes and returns the entry (k, v) having
smallest key; it returns null if there are no entries.

e size(): returns the number of entries.

e isEmpty(): returns true if there are no entries else returns
false.

@ Suppose we implement priority queue using an array. What is
the running time for each of the following operations (the new
entry is added at the end):

e insert(k,v): O(1)
e min(): O(n)
e removeMin(): O(n)

e How about if we keep the array sorted (in non-increasing
order)?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ Priority Queue ADT supports the following operations:

e insert(k,v): Add an entry with key k and value v

e min(): Returns (but does not remove) an entry (k, v) having
smallest key; it returns null if there are no entries.

e removeMin(): Removes and returns the entry (k, v) having
smallest key; it returns null if there are no entries.

e size(): returns the number of entries.

e isEmpty(): returns true if there are no entries else returns
false.

@ There is a data structure called heap where the running time
of the operations are:
e insert(k,v): O(logn)
e min(): O(1)
e removeMin(): O(logn)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ (Minimum) Heap: A (minimum) Heap is a binary tree that
stores entries at its nodes and satisfies the following two
properties:

@ Heap-order property: for every node p other than the root
node, the key stored at p is greater than equal to the key
stored at p's parent.

@ Complete binary tree property: it is a complete binary tree.

o Complete binary tree: A binary tree with height h is a
complete binary tree iff levels 0,1, ..., h — 1 have maximum
number of nodes possible (i.e., 1,2,2%,...,2"7!) and the
remaining nodes at level h reside in the leftmost possible
position.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Heaps and Priority Queues

@ (Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:
@ Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p's
parent.
@ Complete binary tree property: it is a complete binary tree.
o Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0,1, ..., h — 1 have maximum number of nodes
possible (i.e., 1,2,22, ...,2"’1) and the remaining nodes at level h
reside in the leftmost possible position.

@ Is this a min-heap?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Heaps and Priority Queues

@ (Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:
@ Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p's
parent.
@ Complete binary tree property: it is a complete binary tree.
o Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0,1, ..., h — 1 have maximum number of nodes
possible (i.e., 1,2,22, ...,2"’1) and the remaining nodes at level h
reside in the leftmost possible position.

@ Is this a min-heap? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Heaps and Priority Queues

@ (Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:
@ Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p's
parent.
@ Complete binary tree property: it is a complete binary tree.
e Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0,1, ..., h — 1 have maximum number of nodes
possible (i.e., 1,2,22, ...,2"’1) and the remaining nodes at level h
reside in the leftmost possible position.

@ Is this a min-heap?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Heaps and Priority Queues

@ (Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:
@ Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p's
parent.
@ Complete binary tree property: it is a complete binary tree.
e Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0,1, ..., h — 1 have maximum number of nodes
possible (i.e., 1,2,22, ...,2"’1) and the remaining nodes at level h
reside in the leftmost possible position.

@ Is this a min-heap? No

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Heaps and Priority Queues

o (Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:
@ Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p's

parent.
@ Complete binary tree property: it is a complete binary tree.

o Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0,1, ..., h — 1 have maximum number of nodes
possible (i.e., 1,2,2%, ...,2""1) and the remaining nodes at level h
reside in the leftmost possible position.

@ |s this a min-heap?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Heaps and Priority Queues

o (Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:
@ Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p's

parent.
@ Complete binary tree property: it is a complete binary tree.

o Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0,1, ..., h — 1 have maximum number of nodes
possible (i.e., 1,2,2%, ...,2""1) and the remaining nodes at level h
reside in the leftmost possible position.

@ Is this a min-heap? Yes

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ (Minimum) Heap: A (minimum) Heap is a binary tree that stores
entries at its nodes and satisfies the following two properties:
@ Heap-order property: for every node p other than the root node,
the key stored at p is greater than equal to the key stored at p's
parent.
@ Complete binary tree property: it is a complete binary tree.
o Complete binary tree: A binary tree with height h is a complete
binary tree iff levels 0,1, ..., h — 1 have maximum number of nodes
possible (i.e., 1,2,22,...,2"71) and the remaining nodes at level h
reside in the leftmost possible position.

@ Question: Show that any heap with n nodes has height
h = |log n].

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ Consider a pointer based implementation.

public class Node{
int key;
String value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){
leftChild = rightChild = parent = null;
}

}

public class MinHeap{
Node root;
public MinHeap(){
root = null;
}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms




Data Structures

Heaps and Priority Queues

o Consider a pointer based implementation.

public class Node{
int key;
String value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){
leftChild = rightChild = parent = null;
}
}

public class MinHeap{
Node root;
public MinHeap(){
root = null;
}
}

@ Question: How do we implement min()?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

o Consider a pointer based implementation.
@ Question: How do we implement min()?
@ Question: How do we implement insert (k,v)?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

o Consider a pointer based implementation.
@ Question: How do we implement min()?
@ Question: How do we implement insert (k,v)?

o Suppose we want to insert (2, T) in the heap below.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

o Consider a pointer based implementation.
@ Question: How do we implement min()?
@ Question: How do we implement insert (k,v)?

o Consider inserting (2, T) in the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

o Consider a pointer based implementation.
@ Question: How do we implement min()?
@ Question: How do we implement insert (k,v)?

o Consider inserting (2, T) in the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

o Consider a pointer based implementation.
@ Question: How do we implement min()?
@ Question: How do we implement insert (k,v)?

o Consider inserting (2, T) in the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ Consider a pointer based implementation.

@ Question: How do we implement min()?

@ Question: How do we implement insert (k,v)?
o Consider inserting (2, T) in the heap.

@ This process is called up-heap bubbling.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert (k,v)?
Question: How do we implement removeMin()?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert (k,v)?
Question: How do we implement removeMin()?
o Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert (k,v)?
Question: How do we implement removeMin()?
o Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert (k,v)?
Question: How do we implement removeMin()?
o Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?

Question: How do we implement insert (k,v)?
Question: How do we implement removeMin()?

e Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

Consider a pointer based implementation.
Question: How do we implement min()?
Question: How do we implement insert(k,v)?
Question: How do we implement removeMin()?

e Consider removing the entry with the minimum key from the heap.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Heaps and Priority Queues

o Consider a pointer based implementation.
@ Question: How do we implement min()?

@ Question: How do we implement insert (k,v)?
@ Question: How do we implement removeMin()?

o Consider removing the entry with the minimum key from the heap.

@ This process is called down-heap bubbling.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures

Heaps and Priority Queues

@ Let us write the methods for the pointer based implementation.

public class Node{
int key;
String value;
Node leftChild;
Node rightChild;
Node parent;
public Node(){
leftChild = rightChild = parent = null;
}

public class MinHeap{
Node root;
Node lastNode;
public MinHeap(){
root = lastNode = null;
}

}

public String min(){//To be written}

public void insert(int k, String v){//To be written}
public String removeMin(){//To be written}

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms




Data Structures
Heaps and Priority Queues

@ Let us write the methods for the pointer based
implementation.
@ What is the running time of each operation:
e min():
e insert(k, v):
e removeMin():

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



Data Structures
Heaps and Priority Queues

@ Let us write the methods for the pointer based
implementation.
@ What is the running time of each operation:
e min(): O(1)
e insert(k, v): O(logn)
e removeMin(): O(logn)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



End )

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms



