COL106: Data Structures and Algorithms

Ragesh Jaiswal, IIT Delhi

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

@ How do Data Structures play a part in making computational
tasks efficient?

Example problem

Maintain a record of students and their scores on some test so that
queries of the following nature may be answered:

@ Insert: Insert a new record of a student and his/her score.

@ Search: Find the score of a given student.

@ Suppose we maintain the information in a 2-dimensional array
such that the array is sorted based on the names (dictionary
order).

e How much time does each insert operations take? O(n)

e How much time does each search operation take? O(log n)
using Binary Search

e In this case, if the majority of the operations performed are
insert operations, then the previous one is better.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search

Given a sorted array A containing n integers and an integer x, check if x is
present in A.

4

BinarySearch(x, A, i,)

- if(j < i)return(“not present")

- mid « | 3]

- if(A[mid] = x)return(“present”)
if(x < A[mid])return(BinarySearch(x, A, i, mid — 1))
else return(BinarySearch(x, A, mid + 1,))

@ What is the running time of the above algorithm in terms of the
Big-O notation?

Let us denote T(n) as the worst case running time for searching in
sorted arrays of size n.

T(n) < T(|[n/2])+cforalln>1and T(1)=b.

How do we solve such recurrence relation?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Solving Recurrence

Problem
Solving recurrence: T(n) < T (|n/2])+ c for all n>1 and T(1) = b.

@ How do we solve such recurrence relation?
@ Assume that n is a power of 2. Then we can write:

T(n) < T(n/2)+c
< (T(n/4)+c)+c
= T(n/4)+2c
< T(n/2)+i-c
é T(1)+logn-c
< b+c-logn

@ So, T(n) = O(logn)

@ This is known as unrolling of the recursion.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Solving Recurrence

Problem
Solving recurrence: T(n) < T (|n/2]) + c forall n>1and T(1) = b.

@ Similarly, we can solve T(n) > T(|n/2]) + d, T(1) > e to show that
T(n) = Q(log n).
@ What if nis not a power of two?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Solving Recurrence

Problem
Solving recurrence: T(n) < T (|n/2]) + c forall n>1and T(1) = b.

@ Similarly, we can solve T(n) > T(|n/2]) + d, T(1) > e to show that
T(n) = Q(log n).

@ What if nis not a power of two?

@ Note that T(n) < T(n/2) + ¢ does not make sense.

@ Let n; and npy be such that n; < n < ny and ng, ny are the closest
integers to n which are powers of 2.

o Let np = 2% and np, = 2K+,

o We know that T(n1) < T(n) < T(n2)

o Furthermore:

e+d-k
e+d-(k+1)

T(m) <b+c-k
T(n) <b+c-(k+1).

e So, T(n) = ©(log n).
Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Solving Recurrence

Problem
Solving recurrence: T(n) < T ([n/2]) + c for all n> 1 and T(1) = b.

@ Similarly, we can solve T(n) > T(|n/2]|)+d, T(1) > e to show that
T(n) = Q(log n).

@ What if nis not a power of two?

@ Note that T(n) < T(n/2) + ¢ does not make sense.

@ Let n; and ny be such that n; < n < ny and ny, ny are the closest
integers to n which are powers of 2.

@ Let n; = 2% and np = 2k+1,

@ We know that T(n1) < T(n) < T(m2)

o Furthermore:

e+d-k
e+d-(k+1)

T(m) <b+c-k
T(m) <b+c-(k+1).

INIA

@ So, T(n) = O(log n).
@ Informal comment: Dropping floors and ceilings in these recurrence
relation does not change the running time behaviour.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Solving Recurrence

@ Recurrence relations of running time may also be written using
big-(0, 2, ©) notation.

o For example, for binary search the recurrence relation for running time
may be written as:

T(n)=T(ln/2])+ OQ1) for all n > 1; T(1) = O(1)

e Again, we can use the idea of unrolling to solve such recurrence
relations.

@ Exercise: Solve:

T(n)=T(n—1)+ O(1) for all n > 1;

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Digression: Binary Search — Solving Recurrence

@ Recurrence relations of running time may also be written using
big-(0, 2, ©) notation.

o For example, for binary search the recurrence relation for running time
may be written as:

T(n)=T(ln/2])+ OQ1) for all n > 1; T(1) = O(1)

e Again, we can use the idea of unrolling to solve such recurrence
relations.
@ Exercise: Solve:
T(n)=T(n-1)+0(1) foralln>1; T(1)=0(1)
@ Another method used to solve recurrence relations is called the

substitution method.

@ Guess the running time bound.
@ Check that the bound holds using Induction.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Solving Recurrence

@ Another way of viewing unrolling of the recursion is Recurrence Trees.

e For example, consider the following recurrence relation:

T(n)<2-T(n/2)+c-nforalln>1, T(1)<b

° Level 0: cn
0 0 Level 1: (cn/2)*2
T DT D |

bn (n problems of size 1) cn log(n)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Solving Recurrences

@ Solve: T(n)<2-T(n/2)+cn* T(1)<c

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Ternary Search

e Solve: T(n)
e Solve: T(n)

2-T(n/2)+cn*, T(1) < c

<
<T(n/3)+cT(1)<b

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Solving Recurrences

@ In Binary Search, we divided the array into two equal parts
and then zoomed into one of the halves.

o Consider Ternary Search where we divide the array into three
equal parts and then zoom into one of the three parts.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Solving Recurrences

@ In Binary Search, we divided the array into two equal parts
and then zoomed into one of the halves.

@ Consider Ternary Search where we divide the array into three
equal parts and then zoom into one of the three parts.

@ What is the running time of Ternary Search? Is it better than
Binary Search?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A - B.

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A - B.

@ Solution 1: Use long multiplication.

@ What is the running time of the algorithm that uses long
multiplication?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

Introduction

Digression: Binary Search — Recursive Functions

Problem

Multiplying two n-bit numbers: Given two n-bit numbers, A and
B, Design an algorithm to output A - B.

@ Solution 1: Use long multiplication.

@ What is the running time of the algorithm that uses long
multiplication? O(n?)

@ Is there a faster algorithm?

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

End)

Ragesh Jaiswal, IIT Delhi COL106: Data Structures and Algorithms

