COL106: Data Structures and Algorithms

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

e Data Structure: Systematic way of organising and accessing
data.

@ Algorithm: A step-by-step procedure for performing some
task.

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?
@ It should be correct.
@ It should run fast.

@ How do we argue that an algorithm is correct?

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ How do we argue that an algorithm is correct?

e Proof of correctness: An argument that the algorithm works
correctly for all inputs.

@ Proof: A valid argument that establishes the truth of a
mathematical statement.
@ Consider the following algorithm that is supposed to output
the sum of elements of an integer array of size n.

Algorithm

FindSum (A, n)
-sum <+ 0
-fori=1ton
- sum « sum + A[i]
- return(sum)

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we argue that an algorithm is correct?

e Proof of correctness: An argument that the algorithm works correctly
for all inputs.

@ Proof: A valid argument that establishes the truth of a mathematical
statement.
@ Consider the following algorithm that is supposed to output the sum
of elements of an integer array of size n.

Algorithm

FindSum (A, n)
- sum <0
-fori=1ton
- sum < sum + Ali]
- return(sum)

@ To prove the algorithm correct, let us define the following
loop-invariant:
P(i): At the end of the i*/ iteration, the variable sum contains the
sum of first / elements of the array A.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we argue that an algorithm is correct?

e Proof of correctness: An argument that the algorithm works correctly
for all inputs.

@ Proof: A valid argument that establishes the truth of a mathematical
statement.

@ Consider the following algorithm that is supposed to output the sum
of elements of an integer array of size n.

Algorithm

FindSum(A, n)
- sum <0
-fori=1ton
- sum < sum + A[i]
- return(sum)

@ To prove the algorithm correct, let us define the following
loop-invariant:
P(i): At the end of the it/ iteration, the variable sum contains the
sum of first i elements of the array A.

@ How do we prove statements of the form Vi, P(i)?

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ How do we argue that an algorithm is correct?

e Proof of correctness: An argument that the algorithm works correctly
for all inputs.

@ Proof: A valid argument that establishes the truth of a mathematical
statement.

@ Consider the following algorithm that is supposed to output the sum
of elements of an integer array of size n.

Algorithm

FindSum(A, n)
- sum <0
-fori=1ton
- sum < sum + A[i]
- return(sum)

@ To prove the algorithm correct, let us define the following
loop-invariant:
P(i): At the end of the it/ iteration, the variable sum contains the
sum of first i elements of the array A.

@ How do we prove statements of the form Vi, P(i)?Induction

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ Proof: A valid argument that establishes the truth of a
mathematical statement.
e The statements used in a proof can include axioms, definitions,
the premises, if any, of the theorem, and previously proven
theorems and uses rules of inference to draw conclusions.

@ A proof technique very commonly used when proving
correctness of Algorithms is Mathematical Induction.

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a
propositional function, we complete two steps:
@ Basis step: We show that P(1) is true.

@ Inductive step: We show that for all k, if P(1), P(2),..., P(k)
are true, then P(k + 1) is true.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a
propositional function, we complete two steps:
@ Basis step: We show that P(1) is true.

@ Inductive step: We show that for all k, if P(1), P(2),..., P(k)
are true, then P(k + 1) is true.

@ Question: Show that for all n >0, 1 +3+ ...+ (2n—1) = n°.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ Question: Show that for all n >0, 1+3+ ...+ (2n — 1) = n?.

@ Let P(n) be the proposition that 1 + 3 +5 + ... + (2n — 1) equals n?.

@ Basis step: P(1) is true since the summation consists of only a single
term 1 and 1% = 1.

@ Inductive step: Assume that P(1), P(2),..., P(k) are true for any
arbitrary integer k. Then we have:

1+3+..+2k+1)-1) = 1+3+...+2k—-1)+(2k+1)
= Kk?>+4+2k+1 (since P(k) is true)
= (k+1)

This shows that P(k + 1) is true.

@ Using the principle of Induction, we conclude that P(n) is true for all
n > 0. O

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?

@ It should be correct.
@ We use proof of correctness to argue correctness.

@ It should run fast.

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ How do we describe an algorithm?
e Using a pseudocode.
@ What are the desirable features of an algorithm?

@ It should be correct.
@ We use proof of correctness to argue correctness.

@ It should run fast.
@ Given two algorithms A1 and A2 for a problem, how do we

decide which one runs faster?

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

e Idea#1: Implement them on some platform, run and check.

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?
e ldea#1: Implement them on some platform, run and check.

e The speed of programs P1 (implementation of A1) and P2
(implementation of A2) may depend on various factors:

Input

Hardware platform

Software platform

Quality of the underlying algorithm

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ Idea#1: Implement them on some platform, run and check.

@ Let P1 denote implementation of A1 and P2 denote
implementation of A2.

@ Issues with ldea#1:

e If P1 and P2 are run on different platforms, then the
performance results are incomparable.

e Even if P1 and P2 are run on the same platform, it does not
tell us how A1 and A2 compare on some other platform.

e There might be infinitely many inputs to compare the
performance on.

e Extra burden of implementing both algorithms where what we
wanted was to first figure out which one is better and then
implement just that one.

@ So, what we need is a platform independent way of comparing
algorithms.

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

@ What we need is a platform independent way of comparing
algorithms.

e Solution:

e Any algorithm is expressed in terms of basic operations such as
assignment, method call, arithmetic, comparison.

e For a fixed input, we will count the number of these basic
operations in our algorithm. Suppose the number of these
operations is b.

e We will assume that the amount of time required to execute
these basic operations is at most some constant T which is
independent of the input size.

e The running time of the algorithm will be at most (b- T).

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

@ What we need is a platform independent way of comparing
algorithms.

@ Solution:

e Any algorithm is expressed in terms of basic operations such as
assignment, method call, arithmetic, comparison.

e For a fixed input, we will count the number of these basic
operations in our algorithm. Suppose the number of these
operations is b.

o We will assume that the amount of time required to execute
these basic operations is at most some constant T which is
independent of the input size.

e The running time of the algorithm will be at most (b- T).

e But, what about other inputs? We are interested in
measuring the performance of an algorithm and not
performance of an algorithm on a given input.

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



Introduction

@ Given two algorithms A1 and A2 for a problem, how do we decide

which one runs faster?
@ What we need is a platform independent way of comparing

algorithms.
@ Solution: Count the number of basic operations.

e How do we measure performance for all inputs?

FindPositiveSum(A, n)
-sum< 0
-Fori=1ton
- if (A[i] > 0) sum < sum + A[i]
- return(sum)

@ Note that the number of operations grow with the array size n.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
@ What we need is a platform independent way of comparing

algorithms.
@ Solution: Count the number of basic operations.

e How do we measure performance for all inputs?

FindPositiveSum(A, n)
-sum <+ 0
-Fori=1ton
- if (A[{] > 0)sum < sum + A[i]
return(sum)

Note that the number of operations grow with the array size n.
Even for all arrays of a fixed size n, the number of operations may
vary depending on the numbers present in the array.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?

@ What we need is a platform independent way of comparing
algorithms.
@ Solution: Count the number of basic operations.
e How do we measure performance for all inputs?

FindPositiveSum(A, n)
- sum <+ 0
-Fori=1ton

- if (A[i] > 0)sum < sum + A[/]
- return(sum)

@ Note that the number of operations grow with the array size n.

@ Even for all arrays of a fixed size n, the number of operations may
vary depending on the numbers present in the array.

@ For inputs of size n, we will count the number of operations in
the worst-case. That is, the number of operations for the
worst-case input of size n.

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



Introduction

@ Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

@ What we need is a platform independent way of comparing
algorithms.

@ Solution: Count the worst-case number of basic operations
b(n) for inputs of size n and then analyse how this function
b(n) behaves as n grows. This is known as worst-case analysis.

Ragesh Jaiswal, ITD COL106: Data Structures and Algorithms



End )

Ragesh Jaiswal, IITD COL106: Data Structures and Algorithms



