COL 351: Analysis and Design of Algorithms

Instructor: Ragesh Jaiswal

1. (Weak Duality) A linear programming problem in the standard form can be written in short using the following vector notation:

LP1: Maximize
$$(c^T \cdot x)$$
, subject to $A \cdot x \le b$ $x \ge 0$

Here x, c, b are vectors and A is a $m \times n$ matrix. Consider the following related linear program:

LP2: Minimize
$$(b^T \cdot y)$$
, subject to $A^T \cdot y \ge c$ $y \ge 0$

Here y is vector of size m. Consider the following linear program:

Let f_1 be any feasible solution for LP1 and let f_2 be any feasible solution for LP2. Show that $f_1 \leq f_2$.

2. (Randomized rounding) Linear programming can be used to obtain approximation algorithms for NP-hard problems. Consider the Set cover problem. Here we are given subsets $S_1, ..., S_m \subseteq U$ and we want to find the minimum sized subset $I \subseteq \{S_1, ..., S_m\}$ such that the union of elements of subsets in S is equal to U. We may solve the following ILP to obtain a solution to the problem:

Minimize
$$\sum_{i=1}^{m} x_i$$
,
Subject to:
 $\sum_{i:e \in S_i} x_i \ge 1$, for all $e \in U$
 $x_i \in \{0,1\}$, for all x_i

The issue here is that we know ILP is NP-hard. We relax the integer constraint to obtain the following LP:

Minimize
$$\sum_{i=1}^{m} x_i$$
,
Subject to :
 $\sum_{i:e \in S_i} x_i \ge 1$, for all $e \in U$
 $x_i \ge 0$, for all x_i

Suppose the optimal solution of the above LP be $x_1^*, ..., x_m^*$. Now we pick the set cover using the following randomized algorithm:

- 1. $I \leftarrow \phi$
- 2. For all $i: I \leftarrow I \cup S_i$ with probability x_i^* .
- 3. Repeat (2) until all elements are covered.

Show the following:

- (a) The number of times step (2) is executed is at at most $(2 \log n)$ with probability at least (1 1/n).
- (b) The above randomized algorithm with high probability gives an $O(\log n)$ approximation to the set cover problem.