COL351: Analysis and Design of Algorithms
 Instructor: Ragesh Jaiswal

1. Given a string $S=$ " $s_{1} s_{2} \ldots s_{n}$ ", design an algorithm to find the minimum number of characters that need to be inserted to make the resulting string a palindrome. Consider the example $S=$ "abcbd". We can get palindrome "adbcbda" or palindrome "dabcbad" by inserting two characters (one a and one d). Moreover, we cannot get a palindrome by inserting just one character. Discuss running time of your algorithm.
2. You are given an $n \times 5$ matrix A consisting of integers (positive or negative). You have to design an algorithm that outputs a set S of tuples (i, j) indicating locations of the 2-D matrix A such that:
(a) $\sum_{(i, j) \in S} A[i, j]$ is maximized, and
(b) For all pairs of tuples $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \in S,\left(i_{2}, j_{2}\right) \notin\left\{\left(i_{1}-1, j_{1}\right),\left(i_{1}+1, j_{1}\right),\left(i_{1}, j_{1}-\right.\right.$ 1), $\left.\left(i_{1}, j_{1}+1\right)\right\}$.

Discuss running time and correctness proof.
3. You are given an array $A=A[1], A[2], \ldots, A[n]$ containing n integers and a positive integer k. Design an algorithm that outputs an array $C=C[1], C[2], \ldots, C[k]$ of size k such that

$$
\sum_{i=1}^{n} \min _{j \in\{1, \ldots, k\}}\{|A[i]-C[j]|\}
$$

is minimized. Here $|x-y|$ denotes the absolute value of the difference between x and y. Discuss running time for your algorithm.
(For example, if $A=[0,1,2,10,11,12]$ and $k=2$, then $C=[1,11]$)

