COL351: Analysis and Design of Algorithms
Instructor: Ragesh Jaiswal

1. Is the factor-2 approximation for the greedy algorithm for the Minimum Makespan prob-
lem shown in class tight?

2. Recall the Minimum Makespan problem discussed in class. We saw a greedy approxi-
mation algorithm and showed an approximation guarantee of 2. Consider the following
slightly modified algorithm:

GreedySortMakespan
- Consider jobs in decreasing order of duration
- While all jobs are not assigned

- Assign the next job (as per the order defined) to a machine with least load

Let OPT denote the value of an optimal solution and G be the value of the above
greedy solution. Then we will argue that G < (4/3) - OPT. WLOG, let us assume that
d(1) >d(2) > ... > d(n).

Let us call an problem instance (d(1),...,d(n)) nice if as per the above greedy algorithm,
the job with the maximum finishing time is n. We will first argue that it is sufficient to
analyze the approximation guarantee for nice instances.

Claim 1.1: If our greedy algorithm gives a factor ¢ approximation for nice instances, then
it gives factor ¢ approximation for all instances.

We can now focus on only nice instances. Again, for any nice instance, we use G to denote
the value of the greedy solution and OPT to denote the value of an optimal solution.
Let us break the analysis into two cases: (i) d(n) < OPT/3, and (ii) d(n) > OPT/3. For
case (i), we can make the following claim:

Claim 1.2: If d(n) < OPT'/3, then G < (4/3) - OPT.
Now, consider the case when d(n) > OPT/3. We first show that n < 2m.
Claim 1.3: If d(n) > OPT/3, then n < 2m.

Once, we realize the above the next thing we show is that in this case, the greedy
algorithm gives an optimal solution.

Claim 1.4 If d(n) > OPT'/3, then GreedySortMakespan returns an optimal solution.

Combining all the above claims, we get that the above greedy algorithm gives an approx-
imation guarantee of (4/3).



3. Given a sorted array A containing n distinct integers, design an algorithm to determine
if there is an index ¢ such that A[i] = .



