
COL351: Analysis and Design of Algorithms
Instructor: Ragesh Jaiswal

1. You are given a directed graph G = (V,E) in which each node u ∈ V has an associated
price, denoted by price(u), which is a positive integer. The cost of a node u, denoted
by cost(u), is defined to be the price of the cheapest node reachable from u (including
u itself). Design an algorithm that computes cost(u) for all u ∈ V . Discuss correctness
and running time.

2. You are a chemical thief who raids a chemical shop that has n liquid chemicals that are
mutually immiscible. You have a large vessel of total volume V that you want to use
this to steal the chemicals. You know that the total volume of the ith chemical available
in the shop is v(i) and the total volume of this v(i) volume of chemical is w(i). You
have to decide how much volume of each of the chemical to steal so as to maximize your
profit. Design an algorithm that is given inputs V, v(1), w(1), v(2), w(2), ..., v(n), w(n)
and outputs (s1, ..., sn), the volume of items to steal. Note that since you can only steal
a total of V volume of liquids,

∑
i si ≤ V .

(a) Consider the greedy algorithm that considers chemicals in decreasing order of value
w(i)’s and steals as much of an item as possible before considering the next item.
Does this algorithm always give optimal solution?

(b) Consider the greedy algorithm that considers chemicals in increasing order of volume
v(i)’s and steals as much of an item as possible before considering the next item.
Does this algorithm always give optimal solution?

(c) Consider the greedy algorithm that considers chemicals in decreasing order of value

per unit volume. That is, the ratio w(i)
v(i) and steals as much of an item as possible

before considering the next item.

We will show that this greedy algorithm always gives an optimal solution. For
simplicity of argument, assume that w(1)

v(1) ≥
w(2)
v(2) ≥ ... ≥ w(n)

v(n) . Let (o1, ..., on) be any

optimal solution and let (g1, ..., gn) be the output of our greedy algorithm. We will
show that for all i:

g1 ·
w(1)

v(1)
+ ... + gi ·

w(i)

v(i)
≥ o1 ·

w(1)

v(1)
+ ... + oi ·

w(i)

v(i)
(3.0.1)

This would prove that the greedy algorithm produces an optimal solution. To show
this, we first need to prove the following claim.

Claim 1: For all i, g1 + g2 + ... + gi ≥ o1 + o2 + ... + oi.

Let j be the item such that after stealing item j (as per the greedy algorithm), the
vessel becomes full. Note that this means gj+1 = 0, gj+2 = 0, ..., gn = 0. Let us do
a case analysis based on the value of gj . Consider the case when gj ≤ oj . The case

1



when gj > oj is symmetric and is left as one of the exercises. The next claim shows
inequality (3.0.1) when i < j.

Claim 2: For all i < j, we have g1 ≥ o1, g2 ≥ o2, ..., gi ≥ oi and so g1 · w(1)
v(1) + ...+ gi ·

w(i)
v(i) ≥ o1 · w(1)

v(1) + ... + oi · w(i)
v(i) .

Now, if i ≥ j, then we can write:

(g1 − o1) + (g2 − o2) + ... + (gj−1 − oj−1) ≥ (oj − gj) + (oj+1 − gj+1) + ... + (on − gn)

(From Claim 1)

⇒ (g1 − o1) ·
w(j)

v(j)
+ ... + (gj−1 − oj−1) ·

w(j)

v(j)
≥ (oj − gj) ·

w(j)

v(j)
+ ... + (on − gn) · w(j)

v(j)

(since all terms in the first inequality are ≥ 0)

⇒ (g1 − o1) ·
w(1)

v(1)
+ ... + (gj−1 − oj−1) ·

w(j − 1)

v(j − 1)
≥ (oj − gj) ·

w(j)

v(j)
+ ... + (on − gn) · w(n)

v(n)

(since
w(1)

v(1)
≥ ... ≥ w(n)

v(n)
)

⇒ g1 ·
w(1)

v(1)
+ ... + gi ·

w(i)

v(i)
≥ o1 ·

w(1)

v(1)
+ ... + oi ·

w(i)

v(i)

For part (c) you have to prove Claim 1 and Claim 2 and show that analysis for the
case when gj > oj .

3. Given a graph G = (V,E), a subgraph induced by vertex set S ⊆ V is a graph GS =
(S,E′), where (u, v) ∈ E′ iff ((u, v) ∈ E and u ∈ S and v ∈ S).

Prove or disprove: For any strongly connected, weighted, undirected graph G = (V,E)
with distinct edge weights and any non-empty proper subset S of V such that GS and
GV−S are strongly connected, M(G) = M(GS) +M(GV−S) +w(e), where M(.) denotes
the weight of the minimum spanning tree, and w(e) is the weight of the minimum weight
edge e = (u, v) such that u ∈ S and v ∈ V − S.

4. We know that when edge weights are not distinct, then there may be multiple MSTs of
the graph. How do we argue that the Prim’s and Kruskal’s algorithm outputs one of
the MSTs of the given graph? We will do this using an exchange argument. Needless
to say that in both Prim’s and Kruskal’s algorithm, at every step, instead of considering
“the” minimum weight edge we will consider “a” minimum weight edge (that is, break
ties arbitrarily). We will first argue about the optimality of the Prim’s algorithm.

Let e1, ..., en−1 denote the sequence of edges picked by the Prim’s algorithm and let T be
any MST of G. Let ei be the first edge in the sequence e1, ..., en−1 that is not present in
T . Let (S, V − S) denote the cut (that includes the starting vertex) just before picking
ei during the execution of the Prim’s algorithm. Suppose we add the edge ei in T .
This creates a cycle. Consider the edges in this cycle that go across the cut (S, V − S).
All these edges have weights equal to the weight of ei (otherwise there is a spanning
tree of smaller weight as per class discussion). Consider any one such edge ej and let

2



T ′ = T − {ej} ∪ {ei}. Note that T ′ is a spanning tree with the same cost as T . Now, if
T ′ contains all edges e1, ..., en−1, then we are done. Otherwise, we repeat the argument
to construct a spanning tree of same cost as T but that includes all edges e1, ..., en−1.

5. Do a similar argument as above but for Kruskal’s algorithm.

3


