
COL351: Analysis and Design of Algorithms
Instructor: Ragesh Jaiswal

1. In the lectures, we considered DFS starting from a given vertex s (we called this DFS(s)).
In case the undirected graph is not strongly connected, running the DFS from a starting
vertex does not explore all vertices. In such cases, it makes sense to define the following
graph exploration algorithm:

GraphDFS(G)

- While there exists a node u that has not been “explored”

- DFS(u)

Note that the above algorithm will result in a “DFS Forest” instead of a DFS tree as
discussed in class. Run this algorithm on the graph below and show the resulting forest.

2. Consider an undirected graph G and suppose we run the GraphDFS algorithm on G.
The edges in the graph may be placed in two categories depending on the GraphDFS

execution. Some edges will be part of the resulting DFS forest. These are called tree
edges. The remaining edges are called back edges.

For the case of directed graphs, the edges may be categorized further. Let node v be
reachable from node u in the DFS forest. Then v is called the descendent of u and u is
called the predecessor of v. The edges can be placed in the following four categories:

• Tree edges: These are the edges that are part of the DFS forest.

• Forward edges: These are edges that go from a node to a non-child descendent in
the DFS forest.

• Back edges: These are edges that go from a node to its ancestor.

• Cross edges: These are nodes that go from a node to a node that is neither its
ancestor or its predecessor in the DFS forest.

Run the GraphDFS algorithm in the given undirected and directed graphs below and mark
the different types of edges.
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3. Note that back edges are easy to detect while running the GraphDFS algorithm. During
the execution if an edge leads to a vertex v that is still in the recursion stack (i.e., the
recursive call DFS(v) has not returned), then such an edge is a back edge. Show that a
directed graph has a cycle if and only if one detects a back edge while running GraphDFS.
Use this to design an algorithm to check if a given directed graph has a cycle. Discuss
running time of your algorithm.

4. Use the ideas developed for finding strongly connected components of a directed graph to
give another algorithm for topological ordering of vertice of a given DAG by performing
a single execution of the DFS algorithm.

5. You are given a directed graph G = (V,E) in which each node u ∈ V has an associated
price, denoted by price(u), which is a positive integer. The cost of a node u, denoted
by cost(u), is defined to be the price of the cheapest node reachable from u (including
u itself). Design an algorithm that computes cost(u) for all u ∈ V . Discuss correctness
and running time.
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