COL351: Analysis and Design of Algorithms

Instructor: Ragesh Jaiswal

1. This is a recap. of a few proof techniques that you studied in the Discrete Mathematics course. We will use the following definition of even and odd numbers in the example problems that follow:

Odd/even numbers: An integer n is called even iff there exists an integer k such that $n=2 k$. An integer n is called odd iff there exists an integer k such that $n=2 k+1$.

- Direct proof: Used for showing statements of the form p implies q. We assume that p is true and use axioms, definitions, and previously proven theorems, together with rules of inference, to show that q must also be true.
- Give a direct proof of the statement: "If n is an odd, then n^{2} is odd".
- Proof by contraposition: Used for proving statements of the form p implies q. We take $\neg q$ as a premise, and using axioms, definitions, and previously proven theorems, together with rules of inference, we show that $\neg p$ must follow.
- Prove by contraposition that "if n^{2} is odd, then n is odd".
- Proof by contradiction: Suppose we want to prove that a statement p is true and suppose we can find a contradiction q such that $\neg p$ implies q. Since q is false, but $\neg p$ implies q, we can conclude that $\neg p$ is false, which means that p is true. The contradiction q is usually of the form $r \wedge \neg r$ for some proposition r.
- Give a proof by contradiction of the statement: "at least four of any 22 days must fall on the same day of the week"
- Counterexample: Suppose we want to show that the statement for all $x, P(x)$ is false. Then we only need to find a counterexample, that is, an example x for which $P(x)$ is false.
- Show that the statement "Every positive integer is the sum of squares of two integers" is false.
- Mathematical Induction: This was discussed in the lecture.
- Show using induction that for all positive integer $n, 1+2+3+\ldots+n=n \cdot(n+1) / 2$.
- Show using induction that for all positive integers $n, 1+2^{1}+2^{2}+\ldots+2^{n}=$ $2^{n+1}-1$.

2. Assume you have functions f and g such that $f(n)$ is $O(g(n))$. For each of the following statements, decide whether it is true or false and give a proof or counterexample.

- $\log _{2} f(n)$ is $O\left(\log _{2}(g(n))\right)$
- $2^{f(n)}$ is $O\left(2^{g(n)}\right)$
- $f\left(n^{2}\right)$ is $O\left(g\left(n^{2}\right)\right)$

3. The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are defined by the rule

$$
F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}
$$

Show by induction that $F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]$.
4. Discuss the running time of the following algorithm:

```
Fib(n)
    - If ( }n=0\mathrm{ or }n=1)\mathrm{ then return( }n\mathrm{ )
    - return(Fib (n-1) + Fib (n-2))
```

Following is the recurrence relation for the running time of the above recursive algorithm:

$$
T(n) \leq T(n-1)+T(n-2)+d n ; \quad T(0) \leq d ; \quad T(1) \leq d,
$$

where d is some constant. One way to solve and get an upper bound for this recurrence relation is using substitution method. Here, we make a guess on the bound and then prove the the bound is correct using induction. Let us make the following guess: $T(n) \leq c n 2^{n}$ for all $n \geq 2$. We will show that for a suitable choice of constant $c, T(n) \leq c n 2^{n}$ for all $n \geq 2$. Let us try to prove the above statement using induction. Consider $n=2$ for the basis step. We have $T(2) \leq T(1)+T(0)+2 d=4 d$. So, as long as $c \geq d / 2$, we have that $T(2) \leq c \cdot 2 \cdot 2^{2}$. For the inductive step, assume that $T(i) \leq c i$ for $i=2,3,4, \ldots, k-1$. We will show that $T(k) \leq c(k) 2^{k}$. We show this using the recurrence relation:

$$
\begin{aligned}
T(k) & \leq T(k-1)+T(k-2)+d k \\
& \leq c(k-1) 2^{k-1}+c(k-2) 2^{k-2}+d k \\
& \leq c 2^{k-2}(2 k-2+k-2)+d k \\
& \leq(3 / 4) \cdot c k 2^{k}+d k \\
& \leq c k 2^{k}
\end{aligned}
$$

The last inequality is true as long as $d k \leq c k 2^{k} / 4$. So, if we choose $c=d / 2$, then both the basis step and the inductive step go through. So, we get that $T(n)=O\left(n 2^{n}\right)$.

