
COL351: Analysis and Design of Algorithms
Instructor: Ragesh Jaiswal

1. This is a recap. of a few proof techniques that you studied in the Discrete Mathematics
course. We will use the following definition of even and odd numbers in the example
problems that follow:

Odd/even numbers: An integer n is called even iff there exists an integer k
such that n = 2k. An integer n is called odd iff there exists an integer k such
that n = 2k + 1.

• Direct proof: Used for showing statements of the form p implies q. We assume that
p is true and use axioms, definitions, and previously proven theorems, together with
rules of inference, to show that q must also be true.

– Give a direct proof of the statement: “If n is an odd, then n2 is odd”.

• Proof by contraposition: Used for proving statements of the form p implies q. We
take ¬q as a premise, and using axioms, definitions, and previously proven theorems,
together with rules of inference, we show that ¬p must follow.

– Prove by contraposition that “if n2 is odd, then n is odd”.

• Proof by contradiction: Suppose we want to prove that a statement p is true and
suppose we can find a contradiction q such that ¬p implies q. Since q is false, but
¬p implies q, we can conclude that ¬p is false, which means that p is true. The
contradiction q is usually of the form r ∧ ¬r for some proposition r.

– Give a proof by contradiction of the statement: “at least four of any 22 days
must fall on the same day of the week”

• Counterexample: Suppose we want to show that the statement for all x, P (x) is
false. Then we only need to find a counterexample, that is, an example x for which
P (x) is false.

– Show that the statement “Every positive integer is the sum of squares of two
integers” is false.

• Mathematical Induction: This was discussed in the lecture.

– Show using induction that for all positive integer n, 1+2+3+...+n = n·(n+1)/2.

– Show using induction that for all positive integers n, 1 + 21 + 22 + ... + 2n =
2n+1 − 1.
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2. Assume you have functions f and g such that f(n) is O(g(n)). For each of the following
statements, decide whether it is true or false and give a proof or counterexample.

• log2 f(n) is O(log2(g(n)))

• 2f(n) is O(2g(n))

• f(n2) is O(g(n2))

3. The Fibonacci numbers F0, F1, F2, ... are defined by the rule

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

Show by induction that Fn = 1√
5

[(
1+
√
5

2

)n
−
(
1−
√
5

2

)n]
.

4. Discuss the running time of the following algorithm:

Fib(n)

- If (n = 0 or n = 1) then return(n)

- return(Fib(n− 1) + Fib(n− 2))

Following is the recurrence relation for the running time of the above recursive
algorithm:

T (n) ≤ T (n− 1) + T (n− 2) + dn; T (0) ≤ d; T (1) ≤ d,

where d is some constant. One way to solve and get an upper bound for this recur-
rence relation is using substitution method. Here, we make a guess on the bound
and then prove the the bound is correct using induction. Let us make the following
guess: T (n) ≤ cn2n for all n ≥ 2. We will show that for a suitable choice of constant
c, T (n) ≤ cn2n for all n ≥ 2. Let us try to prove the above statement using induc-
tion. Consider n = 2 for the basis step. We have T (2) ≤ T (1) + T (0) + 2d = 4d.
So, as long as c ≥ d/2, we have that T (2) ≤ c · 2 · 22. For the inductive step, assume
that T (i) ≤ ci for i = 2, 3, 4, ..., k − 1. We will show that T (k) ≤ c(k)2k. We show
this using the recurrence relation:

T (k) ≤ T (k − 1) + T (k − 2) + dk

≤ c(k − 1)2k−1 + c(k − 2)2k−2 + dk

≤ c2k−2(2k − 2 + k − 2) + dk

≤ (3/4) · ck2k + dk

≤ ck2k
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The last inequality is true as long as dk ≤ ck2k/4. So, if we choose c = d/2, then both
the basis step and the inductive step go through. So, we get that T (n) = O(n2n).
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