
Learning Robot Manipulation Programs:
A Neuro-symbolic Approach

Vishwajeet Agrawal*, Rahul Jain*, Parag Singla and Rohan Paul
Indian Institute of Technology Delhi, India

* Equal Contribution

Abstract—We address the problem of learning a model for
neuro-symbolic robotic manipulation. Given the data in the
form of triplets, with each triplet representing (a) a natural
language instruction (b) an input scene, (c) an output scene, our
goal is to train a model which when presented with a natural
language instruction, and an input scene, can output a program
(composed of learned actions and reasoning on the input scene),
explaining how the input scene can be affected to result in the
output scene. The inferred program also provides sequential sub-
goals for the robot’s low-level motion planner to complete the
intended task. Unlike previous approaches, which represent the
program to be executed as a sequence of action labels [15], our
model works with explicit neural representation for actions (as
a transformation to objects in a latent space), and is amenable
to composition with pure symbolic reasoning. This makes our
approach highly modular, interpretable, and generalizable to
unseen settings. From a modeling perspective, we first parse the
natural language command in the form of a symbolic program,
which is then executed over the input scene, using the neural
representation of various symbolic concepts. The key building
blocks of our architecture include, training of the parser via
reinforcement learning, and the use of gumble-softmax operation
to work as a selector, while still allowing for back-propagation,
facilitating disentanglement in the action space. The entire system
is differentiable end-to-end with no intermediate supervision. Our
experiments on a simulated environment, with commands con-
sisting of variations, such as single actions, multiple actions, and
scenes consisting of objects with varying attributes, demonstrate
that our model is robust to all these variations, and significantly
outperforms the existing baseline.

I. INTRODUCTION

Constructing robots which can learn to act and achieve
the intended goal based on natural language instructions is a
desirable task to achieve. Applications can be found in several
domains, including, home navigation and control, working in
an assembly line, and a general purpose robotic assistant. The
task is hard due to multiple reasons: (1) grounded actions have
to be parsed from the underlying sentence requiring complex
natural language reasoning (2) the affect of executing these
actions has to be deciphered on the underlying scene, again
requiring complex reasoning now at the image level. Further,
if the supervision is provided as an image of the final target
scene, the model must learn a representation for intermediate
actions to be executed for achieveing the desired affect.

In response, a series of approaches have been proposed in
the literature which address this problem, by inferring latent
actions to be executed and require a representation for low-
level robotic actions. Many of these approaches treat actions
simply as ’labels’ output by the model, without any deeper

semantics. For example, Prospection framework [15] achieves
this by converting the natural language sentence into a series
of sub-goals that the robot needs to execute to achieve the task.
The sub-goals are represented in the form of actions and their
parameters represented as a set of labels output by the model.
Additionally, they predict the future state if the robot had taken
a certain action which allows them to map actions to sub-goals.
Hristov et al. [3] solve a task which is similar in nature to ours,
but still does not work will full natural language semantics.
They take the latent space representations of various concepts
in demonstrations, and map it to a set of pre-defined relational
concepts, such as left, right etc. This allows them to later
specify a starting image, and a set of relational concepts of
the end scene extracted from a demonstration, which are then
used to predict the end effector poses using supervised learning
without learning embeddings for specific actions. Other efforts
such as Neural Task Graphs [4], learn to complete a given
task given a single video demonstration. Gredila et al. [10]
present a framework for direct extracting concepts from a set
of demonstrations, which are then translated into executable
programs. It is shown that the learned concepts can now be
applied to novel settings in a zero-shot learning framework.
Zhu et al. [23] propose to achieve long term planning using
a hierarchical scene graph representation of the underlying
image. The manipulations are achieved through the use of a
Graph Neural Network which allows them to capture various
interaction between the objects in the scene. These efforts
focus on learning semantic concepts from demonstrations
without incorporating language instructions are and do not
learn representations for robot actions.

In this work, we build on the current state-of-the-art, and
propose a model for grounding of concepts in a natural lan-
guage instruction, to those present in the image, and translate
them into actions specified as part of an executable program.
Our action representation is purely neural, and our model
results in a disentangled representation for actions. The output
of our model is a program, which when executed by the robot,
results in the desired world state. Our model is trained end-to-
end without any intermediate supervision. The concepts in our
model, including actions, are represented using a pre-defined
Domain Specification Language (DSL). Broadly, our model
consists of the following three modules: (a) Language Reason-
ing module consists of a parser, which identifies various con-
cepts from the natural language instruction using a hierarchical
parser based on [1]. The parser is trained in an end-to-end

manner using REINFORCE [19] and can handle multi-step
commands. (b) Visual Reasoning module consists of an object
extractor, which learns the concept embeddings for various
attributes, such as various colors, which are then used to filter
objects of interest based on the concepts extracted from the
language using parser. This helps ground the program output
by language reasoner with specific object references (c) Action
Simulator takes the locations of grounded objects identified by
the visual reasoning module, and applies the desired action on
the object(s) present at those position(s), resulting in updated
location of the (first) object argument. In this process, a neural
representation (disentangled) for each action is learned, which
transforms the input object location into a new one, based
on the semantics of the action to be executed and reference
(argument) objects locations. Since our action representations
are disentangled, we need to backpropagate over an action
selection box, which is done using gumble-softmax function.
Our approach is neuro-symbolic since it operates with both the
neural (dense) representation of various concepts (and actions),
and their symbolic representation as executable programs. Our
language reasoning and visual reasoning modules are inspired
by recent work [12] which proposes a neuro-symbolic concept
learner for the task of visual question answering. Whereas they
stop at the task visual question answering on a given image,
we take the idea one step further, by actually allowing for
manipulation of objects using learned action representations,
possibly requiring a sequencing of multiple manipulation steps
as shown in the following example.

Figure 1 shows the example execution for the natural lan-
guage command “put small green block to the right of green
lego block, then put magenta block on small green block.”. The
end-to-end process involves, processing the natural language
command to extract concepts such as small, green, lego,
as well as identifying the action to be executed, resulting
in the parse corresponding to a two-step program (language
reasoning), identifying the relevant objects in the image based
on the filtering of attributes and extracting their positions, and
then grounding the program based on filtered objects (visual
reasoning), and finally passing the action coming from parser,
and locations of object arguments, to compute the new location
of object being operated on in the resulting scene, as well
as sequence of sub-goals for the robot to execute (action
simulation). Since, this is a multi-step command, processing
it involves sequencing of multiple manipulation steps, i.e., the
filtered objects corresponding to the second command will be
operated on after the first manipulation step is complete.

The contributions of this work are: (i) a neuro-symbolic
model for explaining human demonstrations as grounded robot
manipulation programs; (ii) learning grounded dense repre-
sentations for robot manipulation actions; (iii) a novel loss
function and a selection mechanism based on gumble soft-max
to facilitate disentangling in the action space. (iv) simulation
experiments demonstrating generalization to novel settings.
The code and data set is available online.1

1https://github.com/dair-iitd/nsrmp

II. RELATED WORKS

Action Representations for Task Planning. The ability to
reason and plan tasks is conditioned on the robot possessing
knowledge of when it can perform actions and how it affects
the world state. Traditional approaches model robot actions as
symbolic pre-conditions and effects [7]. Such representations
are often hand-coded making them brittle and error-prone
in practice. Learning based efforts aim at acquiring actions
representations through human demonstration or via self-
supervision. Other efforts learn the initiation set for an actions;
implicitly learning to classify regions in the robot’s configu-
ration space where an action can possibly be initiated [8, 18].
Zettlemoyer et al. [22] address the complementary problem
of acquiring the transition model and present an algorithm
for determining planning rules expressing possible symbolic
states resulting from the robot performing an action. Xia et
al. [20] present an learn the a symbolic transition function
in the building on an object-centric world model for tasks
such as block stacking. The afore-mentioned approaches either
(i) forgo learning the grounded representation focusing only
on inferring symbolic associations or (ii) do not possess exe-
cutable or modular structure that can be composed arbitrarily
for reasoning tasks.

Language Grounding to Robot Control. Related efforts
address the problem of inferring manipulation constraints
[2, 13] that capture the intended goal from language utterance
for the purposes of commanding a robot. Prominent models
such as learn to associate linguistic constituents with a sym-
bolic representation of the environment. The likely association
or the grounding for the instruction is used to derive a motion
plan for the robot. Such approaches assume the presence
of spatial concepts and focus on learning the association
between language and they physical world state. The work
presented in this paper, learns such spatial and action concepts
directly from natural supervision forgoing the need for explicit
hand coding of concepts. Other related efforts [14, 16] learn
groundings for actions and spatial relations assuming a set of
hand-coded features or directly from data but lack an explicit
representation of symbolic reasoning which may be needed for
interpreting an instruction. The explicit notion of a program
space used in this work makes learned grounded concepts
amenable to symbolic reasoning. Paxton et al. [15] introduce
a recurrent architecture that translates language instructions
into a sequence of sub-goals for the manipulator to follow.
Central to the approach is a recurrent architecture that learns
to predict sequential changes in the world model caused by
robot actions. Although the model makes significant progress
in predicting future world states, the model lacks the notion
of grounded and executable representation for actions. As
a result, the generalization performance degrades with tasks
possessing repetitive structure that are unseen in training.

Neuro-symbolic Concept Learning. This paper builds
on the neuro-symbolic concept learning framework [12] that
enable learning of concepts such as object attributes and spatial
relations in visual question answering (VQA) dataset. Our

https://github.com/dair-iitd/nsrmp

Fig. 1: Neuro-Symbolic Manipulation. The figure shows three core modules in our approach (a) Language Reasoning Module
(b) Visual Reasoning Module (c) Action Simulator. In the first step, natural language instruction is input to the language
reasoner, which outputs a Program (P), i.e., a sequence of parsed instructions. This program P, along with the visual scene (SI)
is passed to the visual reasoner, which filters relevant objects from the scene, and uses them to the output a grounded program
Pg in which filter commands have been replaced by specific object references. the action simulator takes the action identifier
(from the parser), locations of object arguments as output by visual reasoner, and produces resulting location of argument 1
object of the action command. It also results in outputting of sub-goals (o, p), which is pair of object and position combination
denoting that object o has to be moved to position p during actual robot execution. During training, loss is back-propagated
by comparing the location (bounding box) of each object in the final scene with those predicted by the model.

approach introduces the physical agent affecting the scene and
focuses on learning a deep representation for robot actions
that affect the environment. Lázaro-Gredilla et al. [10] take a
cognitively-inspired approach for inferring symbolic programs
for modifying block patterns to a target configuration. How-
ever, this work assume a deterministic grounding from sensory
inputs to discrete symbols. In contrast, this work builds an
action representation directly on the perceived objects in the
manipulation area. Shah et al. [17] learn LTL task specifi-
cations from humans demonstrations and introduce a model
for effectively searching in the space of programs. However,
the grounding for symbolic program constructs are assumed
known. In contrast, this paper learns executable concepts
that can be reasoned when combined in programs, allowing
synthesis of world state after program execution. More gener-
ally, neuro-symbolic approaches have also found applications
in modeling scene dynamics [21], inferring repetitive visual
structures [11] and motion programs [9] etc.

III. PROBLEM FORMULATION

Robot and Environment Model. Consider a robot ma-
nipulator operating in a table-top environment populated with
a set of rigid objects such as blocks or trays. The robot
perceives the world state via a depth sensor that outputs a
depth image S ∈ RH×W×C , where, the superscript denotes
the height, width and the number of channels (including depth)
of the imaging sensor. Further, the robot’s perception system
includes object detector that can identify object proposals and
determine bounding boxes for object instances detected in the
environment. Let bi ∈ R4 represent a bounding box for the ith

object represented with two 2D coordinates of the diagonal

end-points. Finally, the data association between observed
bounding boxes and object instances is assumed known in
images across time. The workspace is co-habited by a human
partner who provides language instructions Λ such as “put the
blue block on the red block”, “put the small green block to
left of yellow lego block” etc. for robot to perform assembly
tasks. Assuming a closed world setting, changes to the world
state are caused by the robot manipulator, thereby ignoring
any exogenous changes.

Language-guided Task Execution. The robot’s goal is to
interpret the human’s instruction Λ in the context of the initial
world state SI and determine a sequence of low-level motion
motions that result in the final world state SF conforming
to the human’s intention. Performing an instructed task can
involve complex interactions requiring an extended sequence
of low-level motions to perform a long-horizon objective
(e.g., completing a stack assembly of blocks). Following
[6, 23], planning a complex task is factorized into (i) high-
level task planning to determine a sequence of sub-goals and
(ii) the generation of low-level motions to attain each sub-
goal. Formally, the task planning model TaskP lanner(.)
takes the initial scene SI and the instruction Λ as input and
determines a sequence of sub-goals as (g0, g1, . . . , gn) =
TaskP lanner(SI ,Λ). Each sub-goal gi ∈ G aggregates the
knowledge of the object to be manipulated oi and its target
Cartesian SE(3) pose pi and is provided to the low-level
motion planner to synthesize the end-effector trajectory to ex-
ecute. The robot’s motion planner includes grasping an object
and synthesizing a collision-free trajectory for positioning it
at a target pose (on the table or on top of another object).
Online, when the robot is instructed, it uses the learned model

to interpret the instruction as per the current world state and
predicts sub-goals which are then sequentially attained.

Learning Task Planning Model. This paper addresses
the problem of learning the task planning model introduced
above. Let the task planning model be realized as a function
parameterized with trainable parameters Θ. During training,
the human provides a demonstration for a task (consisting of
a sequence of object manipulations) in the form of the initial
and the final world states (SI , SF) and the task instruction Λ.
Given a data set D = {Si

I , S
i
F ,Λ

i}Mi=1, the model parameters
are trained by optimizing a loss L(D; Θ). The overall loss ag-
gregates L(S̃i

F = Simulate(TaskP lanner(Si
I ,Λ; Θ)), Si

F)
for the ith datum, where S̃i

F is the final state estimated by
simulating the plan inferred by TaskP lanner(Si

I ,Λ)) on
intitial state Si

I . Further, we seek strong generalization on
novel world scenes and instructions beyond those encountered
during training and interpretability in sub-goals for a task.

IV. TECHNICAL APPROACH

This section discusses how the task planning model intro-
duced in the previous section can be realized as an end-to-end
trainable neuro-symbolic architecture possessing strong gen-
eralization and interpretability. Given the challenge of directly
inferring the sub-goals from a natural language instruction,
motivated by recent work [12], we take a neuro-symbolic
approach for this problem. We start with a set of pre-identified
concepts, which will be used to ground the concepts in the
natural language to the attributes of specific objects present in
the visual scene (SI), so that desired objects can be identified
and filtered for further processing. These concepts are specified
in the form a Domain Specification Language (DSL). We will
use the word concepts to refer to the concepts related to object
attributes as well as specific actions in the DSL. The rest of
our pipeline consists of three stages.

In Stage I of our pipeline, referred to as Language Rea-
soning Module, we use a hierarchical parser [1] to map the
tokens in the natural language instruction to a program in
the DSL consisting of its operators and concepts. When the
instruction consists of a multi-step command, they are broken
(automatically) into multiple single step commands by the
parser, before extracting the concepts, and passing them to
the next stage. In Stage II of our pipeline, referred to as the
Visual Reasoning Module, we ground the objects in the scene,
by identifying the relevant concepts (object attributes) from the
program extracted in Stage I, and then filtering the desired set
of objects based on the extracted concepts. In Stage III of our
pipeline, referred to as Action Simulator, we take an action,
as extracted by our language parser, sets of its arguments, i.e.,
locations of objects to be operated on as output by Stage II,
and output new bounding box for the first object argument,
2 performed iteratively at every time step t of a multi-step
instruction. The entire operation results in a series of sub-goals
to be achieved by the robot during its execution, which was

2This work assumes binary actions, where only the first object is being
moved, and second gives a reference, but this can easily be relaxed.

TABLE I: Domain Specification Language (DSL)

Attributes. Type: ValSet
• Color: {red,green,blue,magenta,yellow,cyan,while}
• Size: {lego, small}

Actions
• {MoveOn, MoveRight, MoveLeft}

Operators
• Scene() → vec //return a vector of 1’s of size # of objects in scene
• Filter(vec1, val) → vec2 // return vec2 after Filter on vec1 wrt val
• Unique(vec1)→ index // returns index via gumbel-softmax on vec1
• Action(aid, o1, o2) → loc //execute action indexed aid on o1, o2

NOTE: vec is a vector of 1’s. vec1 (input), vec2 (output) represent vectors
of scores (∈ [0, 1]) for a subset of objects based on (prior) matching on
some attribute values. loc represents location of obj1 after executing action

the original objective that we started with. The first two stages
of our pipeline are inspired from Mao et al. [12], whereas the
final stage is entirely novel, and the central contribution of this
work.

A. Domain Specification Language

Our DSL is described in Table I. For each attribute type,
DSL defines a set of values that it can take. These attribute
values form the concepts in the DSL. We assume that attribute
typing is known to us, i.e., for each attribute type, we exactly
know the set of values it can take. In our current formulation,
we work two attribute types, i.e., color and size, but the
formulation is extensible to any finite number of attribute
types, and corresponding sets of values. We also have a symbol
(ActionId) corresponding to each action. In addition, the
DSL consists of the following operators: Scene, Filter,
Unique, Action, whose semantics is given in Table I. The
semantics/implementation of these operators are detailed in
sections where they are used, i.e., in visual reasoning (Section
IV-C) for first three operators, and in action simulator (Section
IV-D) for the last one.

B. Language Reasoning Module

From the instruction Λ, the parser outputs a program P
as a sequence of one-step programs [Π1,Π2, ...,ΠT], each
representing an action execution.

[Π1,Π2, ...,ΠT] ≡← LanguageReasoner(Λ; Θl)

Each Πt is of the form Action(at, sp1, sp2), where at is
ActionId and sp1 refers to the sub-program whose output
is the object to be acted upon, and sp2 refers to the sub-
program whose output is the object in relation to which the first
argument (object) needs to be acted on. These sub-programs
are typically represented as a sequence of filter operations.
We use the ideas detailed in semantic parser of Dong and
Lapata [1], and later used by Mao et al. [12]. We train
our parser by adding the concepts corresponding to actions
executions, which is not available in Mao et al.’s work. We also
need to modify the parser to work for multi-step commands,
which is described after we explain single-step commands.

Take the single-step command, “put small green block to the
right of green lego block”. Then, the resulting program output
by our parser would be: Action(MoveOn, sp1, sp2), where
sp1 is Unique(Filter(small, Filter(green, scene())),
and sp2 is Unique(Filter(green, Filter(lego, scene())).
Like Mao et al., we assume that concepts corresponding to
attribute values are uniquely identified in the language. Further,
we assume that all the attribute related concepts qualifying
a particular object appear together in the instruction 3. This
allows us to process the concepts a priori, and replace them
by concept identifiers treated as a single token. For instance,
the instruction above gets processed to (“put [[X]] block to the
right of [[Y]] block”, X=[small, green], Y=[green, lego]). The
modified instruction is passed through a GRU-based encoder
to get the hidden representation for each token, and the final
instruction embedding emb(Λ) which is passed through an
action decoder to get a logit vector of the size of the total
number of actions. This is passed through a gumbel-softmax
operation [5] to implement a selector over possible actions.
To obtain the sub-program spl (l ∈ {1, 2}), we follow the
approach used by Mao et al. [12] - the instruction embedding
emb(Λ) is passed through another decoder, one for each l, to
get an embedding cl which is then compared (through a dot
product) with embeddings of each concept token (embeddings
of [[X]] and [[Y]] in the above example) to get a probability
over the tokens, from which one of them is sampled.

In the current implementation, since we only have fil-
ter operation which selects objects based on attribute
values, the concept tokens are directly translated into
the corresponding program. E.g., [small, green], is trans-
lated into Unique(Filter(small, Filter(green, scene())).
Since, this part of the parser requires selecting concept tokens,
it is trained using REINFORCE through a reward signal
depending on the final loss term (described later) between
predicted and ground final world state SF . Extending our
parser to process multiple level of hierarchy in the program is
a direction for future work.

Finally, to handle multi-step instructions, in the current
version, we assume each one-step instruction appears consec-
utively, one after another (separated by 0 or more tokens).
We use an encoder-decoder setup that at each step, selects
a position at which the complex instruction needs to be
split 4. This is done recursively until the complex instruction
is completely broken into one-step instructions. These single-
step instructions are then passed through the pipeline as
detailed above to generate corresponding one-step programs.
This part of the parser, splitting multi step into single step
instructions, is also trained using REINFORCE through the
common reward signal depending on the final loss term.
As mentioned earlier, the action selection is handled using
gumbel-softmax operation, and so the parser also gets a back-
propagation signal.

3Relaxing this assumption, and allowing for linguistic variations is a
direction for future work.

4Extending our formulation where multi-step instructions are constructed
by interleave single-step instructions is a direction for future work

C. Visual Reasoning Module
The visual reasoning module aims at substituting the argu-

ment sub-programs sp1, sp2 for each Π ∈ {Πt}Tt=1, with ob-
jects from the scene to get a grounded program, which in turn
is a sequence of grounded one-step programs, [π1, π2, ..., πT],
where each πt is of the form Action(at, ot1, ot2), where ot1
and ot2 are references to objects acted upon at time step t.

πt ← VisualReasoner(SI ,Πt; Θv) ∀t
We note that our image representation already assumes that
we have object bounding boxes available with us (see Sec-
tion III). For each object, we extract a r-dimensional dense
embedding emb(oi) by cropping the image according to its
bounding box and passing through a CNN; emb(oi) ←
ConvNet(Crop(SI , bi)), where bi represents the bounding box
for object oi. We refer to location, loci of an object i in the
image space as the concatenation of the bounding box, bi
and mean depth, di of the object. The depth information is
required to uniquely map a location in the 2D pixel space
to robot’s world coordinates. For each attribute type u (e.g.,
u ∈ {color, size} for our setting), we have a neural operator
fvu that maps the dense object embedding emb(oi) to a vector
fvu(emb(oi)) in the k-dimensional attribute value concept
embedding space. For each attribute type taking value=val,
we learn a corresponding embedding emb(val) in our model.
There is an embedding for each color, e.g., red, green,
blue, etc. in our model, and similarly for each size, i.e.,
small and lego. When a sub-program requires to filter
the objects with attribute of type u with value val, then
the degree of similarity between the embedding of the cor-
responding attribute value in each object oi, i.e., fvu(emb(oi))
and embedding of the attribute value concept, emb(val) is
computed using cosine-distance, and stored in a vector, one
element for each object. Later, when another filter operation
is applied, for each object index i, minimum of the two
vector elements is kept at each index i. In the beginning,
scene() operations returns a vector with all 1′s, representing
that initially all objects are preferred equally in the absence
of any filter operation. After all the Filter operations are
done, Unique operation outputs the index corresponding to the
highest of these elements using a gumbel-softmax operation
to keep the entire operation differentiable. These operations
are also described in the first three rows of Table II. Note that
most of these operations are similar to the ones implemented
by Mao et al. [12]. While they use it for the downstream task
of VQA, we feed these into the next stage of our pipeline
which is action simulation.

D. Action Simulator
Visual reasoning module gives us a sequence of grounded

one-step programs Pg ≡ [π1, π2, ..πT], where πt =
Action(at, ot1, ot2). In the last stage of our pipeline, πt’s are
executed sequentially starting from the initial scene SI , and at
each step, updating the scene and producing the sub-goal gt,
i.e., the target pose pt for object ot1.

St+1, pt ← ActionSimulator(St, πt; Θa)

TABLE II: Implementation of various operations

Signature Implementation
Scene() → vec vec[i] := 1, ∀i
Filter(vec1, val) → vec2 vec2[i] := min(vec1[i], cos sim

(fv
u(emb(oi)), emb(val)), ∀i.

Here, u = AttrType(val)
Unique(vec1) → id id = gumbel−softmax(vec1)
Action(aid, o1, o2) → loc loc := faid(onehot(aid)||l1||l2)

l1 := loc(o1), l2 := loc(o2)

Here, St denotes the scene at time step t. Note that SI ≡ S1.
St+1 differs from St only in terms of the location of object ot1.
The sequence of these executions at every time step t, leads to
the final scene SF ≡ ST+1, the scene obtained by executing
actions up to time step T . As a by-product of this process, we
can read-off the sequence of sub-goals [g1, g2, · · · , gT], which
can then be passed to the robot for execution at inference time.
The computation of the loss in detailed in Section IV-E.

We next describe how πt ≡ Action(at, ot1, ot2), is imple-
mented in our model. The implementation is identical ∀t, so
we can describe this in generic terms for any given t. Action
execution is achieved using a neural operator fat (an MLP)
that takes the one-hot representation of action id at, and the
current locations of objects ot1, ot2 (i.e., at step t) as input and
produces the new location of moved object ot1 as follows:

loc(ot1)← fat(at||loc(ot1||loc(ot2); Θa)

Also, see the last row of Table II. We note that since we
are passing in the one-hot representation of actions (due to
the gumbel-softmax operation at the end of action decoder
of the parser), our implementation results in a disentangled
representation for actions by design. This results in better
interpretability as well modular nature helping in better gener-
alization. Finally, the new location loc(ot1) is transformed to a
position pt in the world space using a pre-learned function as
described in Section III. This gives us a sub goal gt = (ot1, pt).
The updated location is also used to transform the scene which
is to be operated at the next time step. Thus the whole program
Pg is executed sequentially giving us with the required plan
G = [(o11, p1), (o21, p2), ...(oT1, pT)].

E. Loss Function

We do not have direct access to the true plan G. We also
do not have access to intermediate scenes St, 2 ≤ t ≤ T . The
only information we have is how the final scene SF ≡ ST+1

looks like. Therefore, the loss must be computed in terms of
ST+1. Let loci ≡ (bi, di) denote the true location (in the image
space) of object i, in the final scene ST+1. Recall that bi, di are
bounding box and mean depth of the object i respectively. Let
l̂oci denote the final location of object i as predicted by our
model. Then, we compute the loss (for object i) L(l̂oci, loci)

as a combination of two terms, w1 ∗MSE(l̂oci, loci)+w2 ∗(1−
IoU(b̂i, bi)). The first term is the mean squared error between
true and predicted locations, and the second term is one minus
intersection over union (IoU) between the true and predicted
bounding boxes. w1, w2 are hyper-parameters determining the

important of two loss terms, and are set using a validation
set. The total loss, L, is simply average of the loss over each
object, i.e.,

∑N
i=1 L(l̂oci, loci)/N . The reward signal passed

to the parser is computed as, R = R0 − L where R0 is a
hyper-parameter. Recall location is concatenation of bounding
box b and mean depth d.

F. Training and Inference

Since there are multiple stages of our pipeline, and loss
is available only it at the end, it is important to define a
curriculum for the training to be effective. In particular, we
need to first train in simpler settings, followed by freezing
of certain modules, and then moving on to more complex
instructions. Such curriculum training has been found to be
effective in prior neuro-symbolic approaches [12]. We perform
our training using the following steps (a) We first train on
single step commands, and with only selection on a single
attribute type (e.g., color or size) for any given object. This
allows our action simulator to learn disentangled action rep-
resentations. (b) In the second step of curriculum training,
we allow for instructions with selection on multiple attribute
types. In this step, the action simulator is kept frozen; this
can be done since action simulator does not directly depend
on the linguistic variations or the number of attribute types
being used to qualify the objects (c) In the last step, we
allow for instructions involving multiple steps. In this step
of curriculum training, we freeze the rest of the pipeline,
and only train the parser component which splits a given
instruction into multiple single step instructions. This can be
done, since rest of the pipeline can operate as earlier, once a
multi-step instruction has been split into its respective single-
step equivalents. The entire model is then fine-tuned jointly
after curriculum training.

During inference, the learned model inputs a natural lan-
guage instruction and a starting scene. The model first outputs
a latent program by parsing the instruction using language
reasoning module. The visual reasoning module uses this latent
program and the initial scene, to ground the objects mentioned
in the latent program. Finally, the grounded program is passed
to the action simulator to output sub-goals for robot execution.

V. EVALUATION AND RESULTS

A. Data set Generation

A Franka Emika Panda manipulator operating in a PyBullet
simulation environment was used to collect an evaluation
dataset. The work space consisted of a table top with blocks
of different sizes and colors, with two possible size attributes
(a small block, and a (large) lego block) and 7 color types
(red, green, blue, magenta, yellow, cyan, and white). Notions
of robot manipulation actions were included where an object
was positioned to the left, right or on top of another object.
Randomized scenes were sampled with the number of blocks
ranging from 4−6 with further variations in the color and the
size attributes for each object. The object positions were sam-
pled uniformly on the table within the reachable work space
of the manipulator. The block orientations were randomized

in an angular range of 10 degrees in the (x, y)-plane along the
robot base. A set of assembly instructions were collected to
convey an assembly task for the robot to perform. The set of
instructions conveyed a single physical interaction “put the red
block on the green block” or an extended interaction involving
a composition of interactions such as “Put the red block to
right of the small blue block, then put the lego block on top
of red block”. Further, the instruction corpus was augmented
with inclusion of synonyms from a data base. For example, the
phrase “on top of” in the above instruction could be replaced
by phrases such as “on”, “above”, “atop”, etc.

Next, we discuss creation of the ground truth manipulation
programs and sub-goal traces for the specified instructions.
Each instruction was human annotated with a manipulation
program Pg = [π1, π2, ..πT] where the constituent actions
were grounded to the appropriate object instances in the
environment. The robot’s motion skill were implemented using
a crane-like manipulator movement to grasp and re-position
the grasped object at the target pose. The inferred manipulation
program Pg was executed by the robot arm affecting the
initial world state SI towards the final world state SG. The
placement of objects on top, the left or the right of an object
was realized by picking the target pose at the centre of mass
of the base object. Typically, 1-3 manipulation actions were
performed by the robot to complete a task in our data set. The
intermediate sub-goals locations attained by the robot end-
effector were recorded for evaluating the sub-goal predictions
of the learned model. The procedure above resulted in a
training data set of size 2500 with each data point consisting
of the initial scene, final scene and a language instruction. In
order to assess model accuracy, a test data set of size 2000 was
created. The evaluation data-set consisted of novel scenes and
instruction pairs that were unseen during training; assessing
model generalization in novel settings.

B. Baseline Model

To evaluate the relative efficacy of our proposed approach,
we construct a baseline which combines the various stages
of our pipeline, and tries to directly output the sub-goals,
which can be thought of as a neural version of our model,
which does not explicitly argue about various concepts such
as attribute values, and actions. Our baseline is also similar
to the approach used by Paxton et al. [15] by adapting it into
an object centric world without assuming grounding of visual
concepts (colors) to objects in the scene and supervision of
intermediate goals as assumed by the authors. We first describe
the baseline for single step commands. We first compute the
instruction embedding emb(Λ), which is passed through a
decoder to give a dense action embedding, represented by
aΛ. Since we are working in a neural framework, we do
not have an action selector operation unlike in our case. We
also compute the embedding of each object emb(oi). Another
module takes emb(Λ) and emb(oi), projects them in the same
dimensional space, and computes the similarity. The similarity
is computed for every object embedding, which is then used
to compute an attention score, to get the final locations, as a

linear combination of input object locations, which would be
passed the action execution module. This is done separately
(using two different neural networks) for the two arguments of
the binary actions. Let the resulting locations be l1Λ and l2Λ,
respectively. Finally, we pass aΛ, l1Λ and l2Λ through another
neural (action execution) module which outputs the sub-goal
g for Λ. It should be noted that baseline’s action execution
module has the same architecture as our action simulator,
with the difference that it is passed a linear combination of
object locations, since it does not have a notion of object
selector, and a dense embedding for action instead of a one-hot
representation. For multi-step commands, we give the baseline
full knowledge of how the command should be split, and then
we produce the sub-goals independently for each command.

C. Accuracy

We assess the model’s ability to learning grounded and
executable action representations. We evaluate the accuracy of
our proposed model on 1 - 3 step tasks, and compare it with
the Baseline. We report the predicted program P accuracy for
our model. This metric called program accuracy captures the
accuracy of predicting the type and sequence of DSL operators
and concepts (attribute and action types) for each instruction-
scene pair. We compute a (0/1)-loss and consider the predicted
program to be correct only if it exactly matches the ground
truth. Next, we compare the accuracies of predicting only the
first argument object O1 correctly and the second argument
object O2 correctly. For multi-step predictions, we assume a
sequence of O1’s as correct only when O1 at each step is
correct. Next, we turn our attention to evaluate the accuracy
of the overall plan G. Let predicted plan be G = [g1, g2, .., gTp

]

and the correct plan be Ĝ = [ĝ1, ĝ2, .., ĝTc
]. Then we define a

metric for the plan accuracy as,∑min(Tc,Tp)
t=1 M(gt, ĝt)

max(Tc, Tp)

where M calculates an IOU metric between gt = (o1t, bt)
and ĝt = (ô1t, b̂t) as M(gt, ĝt) = 1o1t=ô1t ∗ IOU(bt, b̂t)
For the goals g = (o1t, pt) in the robot’s world space, we
calculate a 3D IOU by calculating volumetric intersection
between predicted and ground positions of object by assuming
a 3D cube with size as dimension of the given block, centered
around position pt. Table III reports the accuracy results. Both
test (around 1700 samples) and train set (around 1700 samples)
contain 1 - 2 step commands. Further, test and train do not
have any 1-step command in common. Both models achieve a
high accuracy during training but the proposed model shows
significant improvement over the baseline for the test set.

D. Generalization

Next, we assess model generalization to instructions that
refer to new object attribute pairs (e.g., small and green
block) that are distinct from those encountered during training.
Table IV reports the accuracies for the proposed and the
baseline models. The results indicate a stronger generalization
for the proposed approach compared to the baseline model.

TABLE III: Accuracy Comparison for the Proposed Model
and the Baseline on the Test and Train Sets

Model Prog (P) O1 O2 IOU-2D IOU-3D
Train Baseline - 95.7 98.0 54.0 33.3

Ours 99.1 98.0 97.8 59.8 29.1
Test Baseline - 90.2 93.0 30.3 14.7

Ours 97.3 95.8 96.2 52.6 25.5

TABLE IV: Generalization On Instructions with Novel Object
Attributes

Model Prog (P) Arg (O1) Arg (O2) IOU-2D IOU-3D
Baseline - 87.5 89.1 29.0 16.6

Ours 98.5 96.3 96.3 51.6 25.2

The result illustrates the model’s ability to reason about lan-
guage instructions with novel object attribute references in the
context of the scene. Such visual-linguistic reasoning operates
on a single scene. Next, we assess generalization over multiple
time steps. We explicitly evaluate the model on a test cases
where an instruction involves multi-step actions that exceed
those seen in training. In effect, we study model generalization
in a setting where the model receives training data 1-2 step
commands but needs to generalize to instructions requiring
3 actions to attain the intended goal. Table V presents the
results for generalization on multi-step commands. The models
were only trained on 1-2 step commands, and are tested
on 3 step commands. The proposed model shows improved
generalization compared to the baseline in the IOU metrics.
Our model has lower accuracy on O1 and O2 primarily due to
parser’s inability to always split 3 step commands as can be
seen from low accuracy of program P . The baseline model,
one the other hand is provided the instructions split manually,
and so does not has to split the command.

Table VI presents evaluation on task instructions that involve
multi-step reasoning over attributes in the setting where the
model is trained only on a single attribute. For example, the
training set instructions only involve singe attributes such as
’red’ and ’lego’ with two different objects but during testing
the model must compositional reason over both attributes to
understand and follow the instruction. As before, the ability
to combine grounded concepts with reasoning allows the
proposed model to generalize better in this setting achieving
significantly higher generalization accuracy compared to the

TABLE V: Generalization over Three-step Instructions with
One/Two-step Instructions in Training

Model Prog (P) Arg (O1) Arg (O2) IOU-2D IOU-3D
Baseline - 76.0 80.9 13.3 6.6

Our 56.8 54.7 53.6 27.2 12.9

TABLE VI: Generalization to Novel Multi-Object Attribute
Instructions

Model Prog (P) Arg (O1) Arg (O2) IOU-2D IOU-3D
Baseline - 55.0 32.4 3.2 1.5

Ours 98.0 75.7 89.5 27.3 9.3

baseline.
In essence, the above results demonstrate stronger general-

ization to novel scenes with unseen object attribute pairs as
well as action sequences that extend beyond those encountered
during training. The neuro-symbolic approach involves learn-
ing of data-driven learning of concept representations that are
amenable to rich compositional reasoning. The neuro-symbolic
approach transfers better to novel settings compared to the
direct neural-only approach that does not make use of the
modular structure during training.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We considered the problem of learning a task planning
model for language-guided robot manipulation. We present
a neuro-symbolic architecture that learns grounded and exe-
cutable programs via visual-linguistic reasoning for instruction
understanding over a given scene as well as grounded actions
that transform the world state towards the intended goal.Our
central contribution is learning a dense and disentangled repre-
sentation for robot actions that on one hand can predict effects
on the world scene, and on the other, are amenable to symbolic
reasoning. We show how the neuro-symbolic model can be
trained end-to-end and demonstrate a strong generalization
to novel scenes and instructions compared to a neural-only
baseline. We note that our work takes a first step towards
learning grounded representation for robot manipulation tasks
that are naturally amenable to symbolic reasoning.

While it is true that the present experiments are constrained
to be in a relatively small action space and deal with a
simplistic block world environment, in the future, we plan
to advance our neuro-symbolic model towards learning rich
program representation required for long horizon tasks in
realistic environments. Specifically, the following directions
emerge. First, the symbolic aspect of the model provides a
path towards learning more complex programs incorporating
a notion of repetition inherent in instructions such as “stack all
the red blocks on the blue tray” where we would like the robot
to infer the repetitive grasping-releasing behaviour required
to complete the task. Such inductive learning would require
the language reasoning module to induce a more expansive
space of programs with notions of repetition. Second, the
present work demonstrates the ability to learn dense neural
representations for actions, which can be expanded to include
a larger set of actions such as pushing, pulling or sliding one
or more objects that are likely to be required for realistic
assemblies. Third, we observe that our approach may not be
directly scalable to larger horizons, i.e. to large number of
steps, as error in initial positions will have a cascade effect on
the later sub goals, which may eventually prohibit learning
long range plans. Tackling incremental error accumulation
by interleaving execution and planning and simultaneously
explaining any resulting program changes to the human partner
(via language descriptions) are exciting avenues for future.

ACKNOWLEDGEMENTS

We thank IIT Delhi HPC facility for computational re-
sources. Parag Singla is supported by the DARPA Explainable
Artificial Intelligence (XAI) Program with number N66001-
17-2-4032, IBM SUR awards, and Visvesvaraya Young Fac-
ulty Fellowship by Govt. of India. Rohan Paul is supported by
the Pankaj Gupta Young Faculty Fellowship. Any opinions,
findings, conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect
the views or official policies, either expressed or implied, of
the funding agencies.

REFERENCES

[1] Li Dong and Mirella Lapata. Language to logical form
with neural attention. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 33–43, 2016.

[2] Thomas M Howard, Stefanie Tellex, and Nicholas Roy. A
natural language planner interface for mobile manipula-
tors. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 6652–6659. IEEE, 2014.

[3] Yordan Hristov, Daniel Angelov, Michael Burke, Alex
Lascarides, and Subramanian Ramamoorthy. Disentan-
gled relational representations for explaining and learning
from demonstration. In Conference on Robot Learning,
pages 870–884. PMLR, 2020.

[4] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Ani-
mesh Garg, Li Fei-Fei, Silvio Savarese, and Juan Carlos
Niebles. Neural task graphs: Generalizing to unseen tasks
from a single video demonstration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8565–8574, 2019.

[5] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

[6] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierar-
chical planning in the now. In Workshops at the Twenty-
Fourth AAAI Conference on Artificial Intelligence, 2010.

[7] Ross A Knepper, Todd Layton, John Romanishin, and
Daniela Rus. Ikeabot: An autonomous multi-robot co-
ordinated furniture assembly system. In 2013 IEEE
International conference on robotics and automation,
pages 855–862. IEEE, 2013.

[8] George Konidaris, Leslie Pack Kaelbling, and Tomas
Lozano-Perez. From skills to symbols: Learning sym-
bolic representations for abstract high-level planning.
Journal of Artificial Intelligence Research, 61:215–289,
2018.

[9] Sumith Kulal, Jiayuan Mao, Alex Aiken, and Jiajun Wu.
Hierarchical motion understanding via motion programs.
arXiv preprint arXiv:2104.11216, 2021.

[10] Miguel Lázaro-Gredilla, Dianhuan Lin, J Swaroop Gun-
tupalli, and Dileep George. Beyond imitation: Zero-shot
task transfer on robots by learning concepts as cognitive
programs. Science Robotics, 4(26), 2019.

[11] Yikai Li, Jiayuan Mao, Xiuming Zhang, Bill Freeman,
Josh Tenenbaum, Noah Snavely, and Jiajun Wu. Multi-
plane program induction with 3d box priors. arXiv
preprint arXiv:2011.10007, 2020.

[12] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B.
Tenenbaum, and Jiajun Wu. The Neuro-Symbolic Con-
cept Learner: Interpreting Scenes, Words, and Sentences
From Natural Supervision. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJgMlhRctm.

[13] Rohan Paul, Jacob Arkin, Nicholas Roy, and Thomas
M Howard. Efficient grounding of abstract spatial con-
cepts for natural language interaction with robot manip-
ulators. In Robotics: Science and Systems Foundation,
2016.

[14] Rohan Paul, Andrei Barbu, Sue Felshin, Boris Katz,
and Nicholas Roy. Temporal grounding graphs for
language understanding with accrued visual-linguistic
context. arXiv preprint arXiv:1811.06966, 2018.

[15] Chris Paxton, Yonatan Bisk, Jesse Thomason, Arunku-
mar Byravan, and Dieter Fox. Prospection: Interpretable
plans from language by predicting the future. In 2019
International Conference on Robotics and Automation
(ICRA), pages 6942–6948. IEEE, 2019.

[16] Subhro Roy, Michael Noseworthy, Rohan Paul, Dae-
hyung Park, and Nicholas Roy. Leveraging past refer-
ences for robust language grounding. In Proceedings
of the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 430–440, 2019.

[17] Ankit Shah and Julie Shah. Interactive robot training for
temporal tasks. In Companion of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction,
pages 603–605, 2020.

[18] Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling,
and Tomás Lozano-Pérez. Learning compositional mod-
els of robot skills for task and motion planning. The
International Journal of Robotics Research, 40(6-7):866–
894, 2021.

[19] Ronald J Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3-4):229–256, 1992.

[20] Victoria Xia, Zi Wang, Kelsey Allen, Tom Silver, and
Leslie Pack Kaelbling. Learning sparse relational tran-
sition models. In International Conference on Learning
Representations, 2018.

[21] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli,
Jiajun Wu, Antonio Torralba, and Joshua B Tenenbaum.
Clevrer: Collision events for video representation and
reasoning. arXiv preprint arXiv:1910.01442, 2019.

[22] Luke S Zettlemoyer, Hanna Pasula, and Leslie Pack
Kaelbling. Learning planning rules in noisy stochastic
worlds. In AAAI, pages 911–918, 2005.

[23] Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and
Yuke Zhu. Hierarchical planning for long-horizon manip-
ulation with geometric and symbolic scene graphs. arXiv
preprint arXiv:2012.07277, 2020.

https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm

ANNEXURE I: DEMONSTRATION ON A SIMULATED ROBOT

We demonstrate the utility of the learned model on a
simulated 7-dof Franka Emika robot manipulator in a table
top setting. The robot is provided language instructions and
uses the model to predict sub-goals. The sequence of predicted
object poses is used to generate low-level motions to complete
the instructed task. In our experiments, the program and sub-
goal inference took less than 0.01 seconds on a CPU machine
and the manipulator takes ≈ 15 seconds to execute one action.

Fig. 2: A robot manipulator correctly performing a single step
instruction “put cyan block on blue block” in a simulated table
top environment.

Figure 2 illustrates the robot successfully performing a
single step instruction, “put cyan block on the blue block”
using the sub-goal predicted by the inferred program.

Figure 3 illustrates the robot manipulator performing the
instruction “put yellow block to the left of white block and
put magenta small block on yellow block”. the model reasons
about the input instruction in the context of the environment
correctly positions the yellow block on the left side of the
intended white block. Subsequently, the robot grasps the
magenta block and correctly positions the block on the yellow
block that was previously manipulated.

Figure 4 shows the execution for the instruction “put red
block on blue block and put magenta block on red block”. The
model correctly predicts a program consisting of a composition
of two sequential manipulation actions. The robot correctly
identifies the intended objects for manipulation, then grasps
and re-positions them to form the intended assembly. In the
final step, the robot correctly placed the magenta-colored block

Fig. 3: Robot manipulator performing a two-step instruction
“put yellow block to the left of white block and put magenta
small block on yellow block”

Fig. 4: Robot manipulator performing a two-step instruction
”put red block on blue block and put magenta block on red
block”. The robot correctly inferred the sequence of symbolic
actions but failed during execution error due to the unstable
placement of the second block.

Fig. 5: Robot manipulator performing a three-step instruction
“put red block to the left of yellow block and put cyan block
to the left of red block and then put red block on cyan block”.
The robot correctly inferred the sequence of actions.

on top of the red-colored block, however, the inferred place-
ment was unstable and the block fell from the assembly. Note
that the current model infers the task plan which is then handed
over to the motion planner. Such a staged approach possesses
the inherent limitation of not being able to recover from
execution failures. The possibilities of a reactive approach
by interleaving planning and execution are to be explored in
future work and is likely to benefit error-recovery.

In Figure 5, the robot is provided with the instruction, “put
red block to the left of yellow block and put cyan block to
the left of red block and then put red block on cyan block”
which requires three successive manipulations. The model
used in this experiment is trained only on two step instructions.
However, at inference time, the model can generalize to a
longer instruction by leveraging the compositionality inherent
in our program representation.

	Introduction
	Related Works
	Problem Formulation
	Technical Approach
	Domain Specification Language
	Language Reasoning Module
	Visual Reasoning Module
	Action Simulator
	Loss Function
	Training and Inference

	Evaluation and Results
	Data set Generation
	Baseline Model
	Accuracy
	Generalization

	Conclusions and Future Directions

