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Abstract
We present the novel task of understanding multi-sentence
entity-seeking questions (MSEQs) i.e, questions that may be
expressed in multiple sentences, and that expect one or more
entities as an answer. We formulate the problem of under-
standing MSEQs as a semantic labeling task over an open
representation that makes minimal assumptions about schema
or ontology specific semantic vocabulary. At the core of our
model, we use a BiDiLSTM (bi-directional LSTM) CRF and
to overcome the challenges of operating with low training
data, we supplement it by using hand-designed features, as
well as hard and soft constraints spanning multiple sentences.
We find that this results in a 6-7pt gain over a vanilla BiDiL-
STM CRF. We demonstrate the strengths of our work using
the novel task of answering real-world entity-seeking ques-
tions from the tourism domain. The use of our labels helps
answer 53% more questions with 42 % more accuracy as
compared to baselines.

Introduction
We introduce the novel task of understanding multi-sentence
questions. Specifically, we focus our attention on multi-
sentence entity-seeking questions (MSEQs) i.e., questions
that expect one or more entities as answer. Such questions
are commonly found in online forums, blog posts, discus-
sion boards etc and come from a variety of domains includ-
ing tourism, books and consumer products.

Figure 1 shows an example MSEQ from a tourism forum,
where the user is interested in finding a hotel that satisfies
some constraints and preferences; an answer to this question
is thus the name of a hotel (entity) which needs to satisfy
some properties such as being a ‘budget’ option. A prelim-
inary analysis of such entity-seeking questions from online
forums reveals that almost all of them contain multiple sen-
tences – they often elaborate on a user’s specific situation
before asking the actual question.

In order to understand and answer such a user question,
we convert the question into a machine representation con-
sisting of labels identifying the informative portions in a
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question. We are motivated by our work’s applicability to
a wide variety of domains and therefore choose not to re-
strict the representation to use a domain-specific vocabu-
lary. Instead, we design an open semantic representation, in-
spired in part by Open QA (Fader, Zettlemoyer, and Etzioni
2014), in which we explicitly annotate the answer (entity)
type; other answer attributes, while identified, are not fur-
ther categorized. Eg. in Figure 1 ‘place to stay’ is labeled as
entity.type while ‘budget’ is labeled as an entity.attr. We
also allow attributes of the user to be represented. Domain
specific annotations such as location for tourism questions
are permitted. Such labels are then be supplied to a down-
stream information retrieval (IR) or a QA component to di-
rectly present an answer entity.

We pose the task of understanding MSEQs as a se-
mantic labeling (shallow parsing)1 task where tokens from
the question are annotated with a semantic label from our
open representation. However, in contrast to related litera-
ture on semantic role labeling (Yang and Mitchell 2017),
slot filling tasks (Bapna et al. 2017) and query formula-
tion (Wang and Nyberg 2016; Vtyurina and Clarke 2016;
Nogueira and Cho 2017), semantic parsing of MSEQs raise
several novel challenges. MSEQs express a wide variety of
intents and requirements which span across multiple sen-
tences, requiring the model to capture within-sentence as
well as inter-sentence interactions effectively. In addition,
questions can be unnecessarily belabored requiring the sys-
tem to reason about what is important and what is not.
Lastly, we find that generating training data for parsing
MSEQs is hard due to the complex nature of the task, further
requiring the models to operate in low training data settings.

In order to address these challenges and label MSEQs, we
use a bi-directional LSTM CRF (BiDiLSTM CRF) (Huang,
Xu, and Yu 2015) and extend it in two ways: (i) We encode
knowledge by incorporating hand-designed features as well
as semantic constraints over the entire multi-sentence ques-
tion during end-to-end training. (ii) We use partially labeled
questions, that are easier to source, to improve training.

In summary, our paper makes the following contributions:

1. We present the novel task of understanding multi-sentence
entity-seeking questions (MSEQs). We define open se-

1We use the phrases ‘semantic labeling’ and ’semantic parsing’
interchangeably in this paper.



Figure 1: An entity-seeking MSEQ and annotated with our semantic labels

mantic labels, which minimize schema or ontology spe-
cific semantic vocabulary and can easily generalize across
domains. These semantic labels identify informative por-
tions of a question that can be used by a downstream an-
swering component.

2. The core of our model uses a BiDiLSTM CRF model. We
extend this by providing hand-designed features and us-
ing Constrained Conditional Model (CCM) (Chang, Rati-
nov, and Roth 2007) inference, which allows us to specify
within-sentence as well as inter-sentence (hard and soft)
constraints, encoding prior knowledge about the labeling
task.

3. We present detailed experiments on our models using the
tourism domain as an example. We also demonstrate how
crowd-sourced partially labeled questions can be effec-
tively used in our constraint based tagging framework to
help improve labeling accuracy. We find that our best
model achieves 7 pt improvement in F1 scores over a
baseline BiDiLSTM CRF.

4. We demonstrate the applicability of our semantic labels
in an end-QA task: the novel task of directly answer-
ing tourism-related MSEQs using a web based semi-
structured knowledge source. Our semantic labels help
formulate a more effective query to knowledge sources
and our system answers 53% more questions with 42 %
more accuracy as compared to baselines

Related Work
To the best of our knowledge, we are the first to explic-
itly address the task of understanding multi-sentence entity-
seeking questions and demonstrate its use in an answering
task.

Question Answering Systems
There are two common approaches for QA systems – joint
and pipelined, both with different advantages. The joint sys-
tems usually train an end-to-end neural architecture, with
a softmax over candidate answers (or spans over a given

passage) as the final layer (Iyyer et al. 2014; Rajpurkar
et al. 2016), while a pipelined approach (Fader, Zettle-
moyer, and Etzioni 2014; Berant and Liang 2014; Fader,
Zettlemoyer, and Etzioni 2013; Kwiatkowski et al. 2013;
Vtyurina and Clarke 2016; Wang and Nyberg 2016) divides
the task into two components – question processing (under-
standing) and querying the knowledge source. Our work fol-
lows the second approach.

In this paper, we return entity answers to multi-sentence
entity seeking questions. The problem of returning direct,
(non-document/passage) answers to questions from back-
ground knowledge sources has been studied, but primar-
ily for single sentence factoid-like questions (Fader, Zettle-
moyer, and Etzioni 2014; Berant and Liang 2014; Yin et al.
2015; Sun et al. 2015; Saha et al. 2016; Khot, Sabharwal,
and Clark 2017; Lukovnikov et al. 2017). Reading compre-
hension tasks (Rajpurkar et al. 2016; Trischler et al. 2016;
Joshi et al. 2017; Trivedi et al. 2017) require answers to be
generated from unstructured text also only return answers
for simple single-sentence questions.

Other works have considered multi-sentence questions,
but in different settings, such as the specialized setting
of answering multiple-choice SAT and science questions
(Seo et al. 2015; Clark et al. 2016; Khot, Sabharwal, and
Clark 2017; Guo et al. 2017), mathematical word prob-
lems (Liang et al. 2016), and textbook questions (Sachan,
Dubey, and Xing 2016). Such systems do not return en-
tity answers to questions. Community QA systems (Bog-
danova and Foster 2016; Shen et al. 2015; Qiu and Huang
2015; Tan, Xiang, and Zhou 2015) match questions with
user-provided answers, instead of entities from background
knowledge-source. IR-based systems (Vtyurina and Clarke
2016; Wang and Nyberg 2016) query the Web for open-
domain questions, but return long (1000 character) passages
as answers; they haven’t been developed for, or tested on
entity-seeking questions. These techniques that can han-
dle MSEQs (Vtyurina and Clarke 2016; Wang and Nyberg
2016) typically perform retrieval using keywords extracted
from questions; these do not “understand” the questions and
can’t answer many tourism questions, as our experiments



show. The more traditional solutions (e.g., semantic pars-
ing) that parse the questions deeply can process only single-
sentence questions (Fader, Zettlemoyer, and Etzioni 2014;
Berant and Liang 2014; Fader, Zettlemoyer, and Etzioni
2013; Kwiatkowski et al. 2013).

Finally, systems such as QANTA (Iyyer et al. 2014) also
answer complex multi-sentence questions but their methods
can only select answers from a small list of entities and also
require large amounts of training data with redundancy of
QA pairs. In contrast, the subset of Google Places we exper-
iment with has close to half a million entities.

We discuss literature on parsing (understanding) ques-
tions in the next section.

Question Parsing
QA systems use a variety of different intermediate seman-
tic representations. Most of them, including the rich body
of work in NLIDB and semantic parsing, parse single sen-
tence questions into a query based on the underlying on-
tology or DB schema and are often learned directly by
defining grammars, rules and templates (Zettlemoyer 2009;
Liang 2011; Kwiatkowski et al. 2013; Berant et al. 2013;
Yih et al. 2015; Sun et al. 2015; Saha et al. 2016; Reddy et al.
2016; Khot, Sabharwal, and Clark 2017; Cheng et al. 2017;
Lukovnikov et al. 2017). Work such as (Fader, Zettlemoyer,
and Etzioni 2014; Berant and Liang 2014) build open se-
mantic representations for single sentence questions, that are
not tied to a specific knowledge source or ontology. We fol-
low a similar approach and develop an open semantic rep-
resentation for multi-sentence entity seeking questions. Our
representation uses labels that help a downstream answering
component return entity answers.

Recent works build neural models that represent a ques-
tion as a continuous-valued vector (Bordes, Chopra, and We-
ston 2014; Bordes, Weston, and Usunier 2014; Xu et al.
2016; Chen et al. 2016; Zhang et al. 2016) but such meth-
ods require significant amounts of training data. Some sys-
tems rely on IR and do not construct explicit semantic rep-
resentations at all (Sun et al. 2015; Vtyurina and Clarke
2016); they rely on selecting keywords from the question
for querying and as shown in our experiments do not per-
form well for answering multi-sentence entity-seeking ques-
tions. Work such as that by (Nogueira and Cho 2017) uses
reinforcement learning to select query terms in a document
retrieval task and requires a large collection of document-
relevance judgments. Extending such an approach for our
task could be an interesting extension for future work.

We now summarize recent methods employed to generate
semantic representations of questions.

Neural Semantic Parsing
There is a large body of literature dealing with semantic
parsing of single sentences, especially for frames in Prop-
Bank and Framenet (Palmer, Gildea, and Kingsbury 2005;
Baker, Fillmore, and Lowe 1998). Most recently, methods
that use neural architectures for SRL (Semantic Role La-
beling) have been developed. For instance, work by (Zhou
and Xu 2015) uses a BiDiLSTM CRF for labeling sentences
with PropBank predicate argument structures, while work

by (He et al. 2017; 2018) relies on a BiDiLSTM with BIO-
encoding constraints during LSTM decoding. Other recent
work by tomemnlp2017 proposes a BiDiLSTM CRF model
that is further used in a graphical model that encodes SRL
structural constraints as factors. Work such as that by (Bapna
et al. 2017) uses a BiDiLSTM tagger for predicting task ori-
ented information slots from sentences. Our work uses sim-
ilar approaches for parsing MSEQs, but we note that such
systems cannot be directly used in our task due to their
model specific optimizations for their label space. However,
we adapt the label space of the recent Deep SRL system (He
et al. 2017) for our task and use its predicate tagger as a
baseline for evaluation.

Problem Statement
Given a multi-sentence entity seeking question, our goal is
to first parse and generate a semantic representation of the
question. These semantic labels identify informative por-
tions of a question that can be used by a downstream answer-
ing component. The semantic representation of the question
is then used to return an entity answer for the question using
a knowledge source.

Semantic Labels for MSEQs
As mentioned earlier, our question understanding compo-
nent parses an MSEQ into an open semantic representation.
Our choice of representation is motivated by two goals. First,
we wish to make minimal assumptions about the domain
of the QA task and therefore, minimize domain-specific se-
mantic vocabulary2. Second, we wish to identify only the
informative elements of a question, so that a robust down-
stream QA or IR system can meaningfully answer it. As a
first step towards a generic representation for an MSEQ, we
make the assumptions that a multi-sentence question is ask-
ing only one final question, and that the expected answer is
one or more entities. This precludes Boolean, comparison,
‘why’/‘how’, and multiple part questions

We have two labels associated with the entity being
sought: entity.type and entity.attr, to capture the type and the
attributes of the entity, respectively. We also include a label
user.attr to capture the properties of the user asking the ques-
tion. The semantic labels of entity.type and entity.attr are
generic and will be applicable to any domain. Other generic
labels to identify related entities (eg: in questions where
users ask for entities similar to a list of entities) could also
be defined. We also allow the possibility of incorporating ad-
ditional labels which are domain specific. For instance, for
the tourism domain, location could be important, so we can
include an additional label entity.location describing the
location of the answer entity.

Figure 1 illustrates the choice of our labels with an ex-
ample from the tourism domain. Here, the user is interested
in finding a ‘place to stay’ (entity.type) that satisfies some
properties such as ‘budget’ (entity.attr). The question in-
cludes some information about the user herself e.g., ‘will
not have a car’ which may become relevant for answering

2Our representation can easily be generalized to include
domain-specific semantic labels, if required.



the question. The phrase ‘San Francisco’ describes the loca-
tion of the entity and is labeled with a domain specific label
(entity.location).

MSEQ Semantic Parsing
We formulate the task of outputting the semantic represen-
tation for a user question as a sequence labeling problem.
There is a one to one correspondence between our token-
level label set and the semantic labels described in earlier.
We utilize a BiDiLSTM CRF (Huang, Xu, and Yu 2015) for
sequence labeling and as described previously, we extend the
model in order to address the challenges posed by MSEQs:
(a) First, we incorporate hand-engineered features especially
designed for our labeling task (b) Second, we make use of
a Constrained Conditional Model (CCM) (Chang, Ratinov,
and Roth 2007) to incorporate within-sentence as well as
inter-sentence constraints. These constraints act as a prior
and help ameliorate the problems posed by our low-data set-
ting. (c) Third, we use Amazon Mechanical Turk (AMT) to
obtain additional partially labeled data which we use in our
constraint driven framework.

Features
We incorporate a number of (domain-independent) features
into our BiDiLSTM CRF model where each unique feature
is represented as a one-hot vector and concatenated with the
word-vector representation of each token.

Our features are described as follows: (a) Lexical features
for capitalization, indicating numerals etc., token-level fea-
tures based on POS and NER (b) hand-designed entity.type
and entity.attr specific features. These include indica-
tors for guessing potential types, based on targets of WH
(what, where, which) words and certain verb classes; multi-
sentence features that are based on dependency parses of in-
dividual sentences that aid in attribute detection, e.g., for ev-
ery noun and adjective, an attribute indicator feature is on if
any of its ancestors is a potential type as indicated by type
feature; indicator features for descriptive phrases (Contrac-
tor, Mausam, and Singla 2016), such as adjective-noun pairs.
(c) For each token, we include cluster ids generated from
a clustering of word2vec vectors (Mikolov et al. 2013) run
over a large tourism corpus. (d) We also use the counts of a
token in the entire post, as a feature for that token (Vtyurina
and Clarke 2016).

Constraints
Since we label multiple-sentence questions, we need to
capture patterns spanning across sentences. One alternative
would be to model these patterns as features defined over
non-adjacent tokens (labels). But this can make the model-
ing quite complex. Instead, we model them as global con-
straints over the set of possible labels.

We design the following constraints: (i) type constraint
(hard): every question must have at least one entity.type
token, and (ii) attribute constraint (soft), which penalizes
absence of an entity.attr label in the sequence. (iii) a
soft constraint that prefers all entity.type tokens occur in

Figure 2: BiDi LSTM CCM for sequence labeling.

the same sentence. The last constraint helps reduce erro-
neous entity.type labels but allows the labeler to choose
entity.type-labeled tokens from multiple sentences only if
it is very confident. Thus, while the first two constraints are
directed towards improving recall, the last constraint helps
improve precision of entity.type labels

In order to use our constraints, we employ Constrained
Conditional Models (CCMs) for our task (Chang, Ratinov,
and Roth 2007) which use an alternate learning objective ex-
pressed as the difference between the original log-likelihood
and a constraint violation penalty:∑

i

wTφ(x(i),y(i))−
∑
i

∑
k

ρkdCk
(x(i),y(i)) (1)

Here, i indexes over all examples and k over all constraints.
x(i) is the ith sequence and y(i) its labeling. φ andw are fea-
ture and weight vectors respectively. dCk

and ρk denote the
violation score and weight associated with kth constraint.
The w parameters are learned analogous to a vanilla CRF
and computing ρ parameters resorts to counting. Hard con-
straints have an infinite weight. Inference in CCMs is for-
mulated as an Integer Linear Program (ILP); see Chang et
al.(2007) for details. The original CCM formulation was
in the context of regular CRFs (Lafferty, McCallum, and
Pereira 2001) and and we extend its use in a combined model
of BiDiLSTM CRF with CCM constraints that is trained
end-to-end (Figure 2).

Partially Labeled Data
Data Collection: In order to obtain a larger amount of la-
beled data for our task, we make use of crowd-sourcing
(Amazon Mechanical Turk). Since our labeling task can be
fairly complex, we divide our crowd task into multiple steps.
We first ask crowd to (i) filter out forum questions that are
not entity-seeking questions. For the questions that remain,
the crowd provides (ii) user.∗ labels, and (iii) entity.∗ la-
bels. Taking inspiration from (He, Lewis, and Zettlemoyer
2015), for each step, instead of directly asking for token la-
bels, we ask a series of indirect questions as described in the
next section that can help source high precision annotations.

We obtain two sets of labels (different workers) on each
question. However, due to the complex nature of the task we



type attr loc
Avg. token level agreement 47.98 37.78 68.56

Table 1: Agreement for entity labels on AMT

find that workers are not complete in their labeling and we
therefore only use token labels where both the set of work-
ers agreed on labels. Thus we are able to source annotations
with high precision, while recall can be low. Table 1 shows
token-level agreement statistics for labels collected over a
set of 400 MSEQs from the tourism domain. Some of the
disagreement arises from labeling errors due to complex na-
ture of the task. In other cases, the disagreement results from
their choosing one of the several possible correct answers.
E.g., in the phrase “good restaurant for dinner” one worker
labels entity.type =‘restaurant’, entity.attr =‘good’
and entity.attr =‘dinner’, while another worker simply
chooses the entire phrase as entity.type.

Training with partially labeled posts We devise a novel
method to use this partially labeled data, along with our
small training set of expert labeled data, to learn the param-
eters of our CCM model. We utilize a modified version of
Constraints driven learning (CODL) (Chang, Ratinov, and
Roth 2007) which uses a semi-supervised iterative weight
update algorithm, where the weights at each step are com-
puted using a combination of the models learned on the
labeled and the unlabeled set (Chang, Ratinov, and Roth
2007).

Given a dataset consisting of a few fully labeled as well
as unlabeled examples, the CoDL learning algorithm first
learns a model using only the labeled subset. This model is
then used to find labels (in a hard manner) for the unlabeled
examples while taking care of constraints. A new model is
then learned on this newly annotated set and is combined
with the model learned on the labeled set in a linear manner.
The parameter update can be described as:

(w(t+1), ρ(t+1)) = γ(w(0), ρ(0)) + (1− γ)Learn(U(t)) (2)

Here, t denotes the iteration number, U (t) denotes the un-
labeled examples and Learn is a function that learns the
parameters of the model. In our setting, Learn trains the
neural network via back-propagation. Instead of using un-
labeled examples in U (t) we utilize the partially labeled set
whose values have been filled in using parameters at itera-
tion t and, inference over the set involves predicting only the
missing labels. This is done using the ILP based formulation
described previously and γ controls the relative importance
of the labeled and partial examples. To the best our knowl-
edge, we are the first to exploit partial supervision from a
crowd-sourcing platform in this manner.

Experimental Evaluation
The goal of our experimental evaluation was to analyze the
effectiveness of our proposed model for the task of under-
standing MSEQs. We next describe our dataset, evaluation
methodology and our results in detail.

Dataset
For our current evaluation, we used the following three se-
mantic labels: entity.type, entity.attr, entity.location.
We also used a default label other to mark any tokens not
matching any of the semantic labels.

We use 150 expert-annotated tourism forum questions
(9200 annotated tokens) as our labeled dataset and perform
leave-one out cross-validation. This set was labeled by two
experts, including one of the authors, with high agreement.
For experiments with partially labeled learning, we add 400
partially-annotated questions from crowd-sourced workers
to our training set. As described previously, each question is
annotated by two workers and we retain token labels marked
the same by two workers, while treating the other labels as
unknown. We still compute a leave one out cross-validation
on our original 150 expert-annotated questions (complete
crowd data is included in each training fold).

Methodology
Sequence-tagged tokens identify phrases for each seman-
tic label – so, instead of reporting metrics at the token
level, we compute a more meaningful joint metric over
tagged phrases. We define a matching-based metric that first
matches each extracted segment with the closest one in the
gold set, and then computes segment level precision us-
ing constituent tokens. Analogously, recall is computed by
matching each segment in gold set with the best one in ex-
tracted set. As an example, for Figure 1, if the system ex-
tracts “convenient to the majority” and “local budget” for
entity.attr then our matching-metric will compute preci-
sion as 0.75 (1.0 for “convenient to the majority” and 0.5 for
“local budget)” and recall as 0.45 (1.0 for “budget”, 0.0 for
“best” and 0.364 for “convenient to the majority ... like to
see”).

We use the Mallet toolkit3 for CRF implementation and
the GLPK ILP-based solver4 for CCM inference. In the
case of BiDiLSTM based CRF, the BiDiLSTM network at
each time step feeds into a linear chain CRF layer. The in-
put states in the LSTM are modeled using a 200 dimension
word vector representation of the token. These word vec-
tor representations were with pre-trained using the word2vec
model(Mikolov et al. 2013) on a large collection of 80, 000
tourism questions. For CoDL learning we set γ to 0.9 as per
original authors’ recommendations.

Results
Table 2 reports the performance of our semantic labeler un-
der different configurations. We find that a BiDiLSTM CRF
(lower half of the table) approach outperforms a CRF sys-
tem (upper half of the table) in each comparable setting - for
instance, using a baseline vanilla CRF based system using
all features gives us an aggregate F1 of 50.8 while the the
performance of a BiDi LSTM CRF approach using features
is 56.2. As a baseline we use the predicate tagger from the
Deep SRL system (He et al. 2017) to utilize our label space
and we find that it performs similar to our CRF setup. Our

3http://mallet.cs.umass.edu/
4https://www.gnu.org/software/glpk/



Model F1 F1 F1 F1
(entity.type) (entity.attr) (entity.loc) (aggr)

Deep SRL (He et al. 2017) 48.4 47.8 53.2 49.8

CRF (all features) 51.4 45.3 55.7 50.8
CCM 59.6 50.0 56.1 55.2
CCM (with all crowd data) 55.1 42.2 46.7 48.0
PS CCM 58.5 50.6 60.3 56.5

BiDi LSTM CRF 53.3 47.6 52.1 51.0
BiDi LSTM CRF+Feat 58.4 48.1 62.0 56.2
BiDi LSTM CCM+Feat 59.4 49.8 62.3 57.2
PS BiDi LSTM CCM+Feat 62.9 50.4 61.5 58.3

Table 2: Sequence tagger F1 scores using CRF with all
features (feat), CCM with all features & constraints, and
partially-supervised CCM over partially labeled crowd data.
The second set of results mirror these settings using a bi-
directional LSTM CRF. Results are statistically significant
(paired t-test,p value<0.000124 for aggregate F1). Models
with “PS” as a prefix use partial supervision.

Algorithm Prec Recall F1
CRF (all features) 66.9 41.7 51.4
CCM (all features) 62.1 57.2 59.6

BiDI LSTM CRF with Features 54.1 63.6 58.4
BiDi LSTM CCM with Features 55.1 64.5 59.4

Table 3: (i) Precision and Recall of entity.type with and with-
out CCM inference.

best model combines a BiDiLSTM CRF with hand-designed
features, CCM constraints along with learning from partially
annotated crowd data. This model has nearly a 7 pt gain
over the baseline BiDiLSTM CRF model. Further, usage of
hand-curated features, within-sentence and cross-sentence
constraints as well as partial supervision, each help succes-
sively improve the results. Next, we study the effect of each
of these enhancements in detail.

Effect of features In an ablation study performed to learn
the incremental importance of each feature, we find that de-
scriptive phrases, and our hand-constructed multi-sentence
type and attribute indicators improve the performance of
each label by 2-3 points. Word2vec features help type detec-
tion because entity.type labels often occur in similar con-
texts, leading to informative vectors for typical type words.
Frequency of non stopword words in the multi-sentence post
are an indicator of the word’s relative importance, and the
feature also helps improves overall performance.

Effect of constraints A closer inspection of Table 2 re-
veals that the vanilla CRF configuration sees more benefit
in using our CCM constraints as compared to the BiDiL-
STM CRF based setup (4pt vs 1pt). To understand why, we
study the detailed precision-recall characteristics of individ-
ual labels; the results for entity.type are reported in Table
3. We find that the BiDiLSTM CRF based setup has signifi-
cantly higher recall than its equivalent vanilla CRF counter-
part while the opposite trend is observed for precision. As
a result, since two of the three constraints employed by us

in CCM are oriented towards improving recall5, we find that
they improve overall F1 more by finding tags that were oth-
erwise of lower probability (i.e. improving recall).

Effect of partial-supervision In order to further under-
stand the effect of partial-supervision, we trained a CCM
based model that makes use of all the crowd-sourced labels
for training, by adding conflicting labels for a question as
two independent training data points. As can be seen, us-
ing the entire noisy crowd-labeled sequences (row labeled
“CCM (with all crowd data)” in upper half of Table 2) hurts
the performance significantly resulting in an aggregate F1
of just 48.0 while the corresponding partially-supervised
CCM system trained using partially labeled data has an F1
of 56.5.
Overall: Our results demonstrate that the use of each
of hand-engineering features, within-sentence and inter-
sentence constraints and use of partially labeled data help
improve the accuracy of labeling MSEQs.

MSEQ-QA
We now demonstrate the usefulness of our MSEQ semantic
labels and tagging framework by enabling a QA end task
which returns entity answers for multi-sentence MSEQs. To
the best of our knowledge we are the first to attempt such a
QA task.

We use our sequence tagger described previously to gen-
erate the semantic labels of the questions. These semantic
labels and their targets are used to formulate a query to
the Google Places collection, which serves as our knowl-
edge source.6. The Google places collection contains details
about eateries, attractions, hotels and other points of inter-
ests from all over the world, along with reviews and ratings
from users. It exposes an end point that can be used to exe-
cute free text queries and it returns entities as results.

We convert the semantic-labels tagged phrases
into a Google Places query via the transformation:
“concat(entity.attr) entity.type in entity.location”.
Here, concat lists all attributes in a space-separated fashion.
Since some of the attributes may be negated in the original
question, we filter out these attributes and do not include it
as part of the query for Google Places.
Detection of Negations: We use a list of triggers that indi-
cate negation. We start with a manually curated set of seed
words, and expand it using synonym and antonym counter
fitted word vectors (Mrksic et al. 2016). The resulting set of
trigger words flag the presence of a negation in a sentence.
We also define the scope of a negation trigger as a token (or
a set of continuous tokens with the same label) labeled by
our sequence tagger that occur within a specified window of
the trigger word. Table reports the accuracy of our negation
rules as evaluated by an author. The ‘Gold’ columns denote
the performance when using gold semantic label mentions.
The ‘System’ columns are the performance when using la-
bels generated by our sequence tagger.

5Recall that we require at least one entity.type (hard constraint)
and prefer at least one entity.attr (soft constraint)

6https://developers.google.com/places/web-service/



Gold System
P R F1 P R F1

Negations 86 66 74.6 85 62 71.7

Table 4: Performance of negation detection using gold se-
quence labels, and system generated labels

System Acc@3 (%) MRR Recall (%)
WebQA 18.8 0.16 40

WebQA (manual) 40.2 0.37 31.2
MSEQ-QA 56.9 0.47 47.8

Table 5: QA task results using the Google Places web API
as knowledge source.

Baseline Since there are no baselines for this task, we
adapt and re-implement a recent complex QA system (called
WebQA) originally meant for finding appropriate Google re-
sults (documents) to questions posed in user forums (Vtyu-
rina and Clarke 2016). WebQA first short-lists a set of top 10
words in the question using a tf-idf based scheme computed
over the set of all questions. A supervised method is then
used to further, shortlist 3-4 words from that form the query.
For best performance, instead of using supervised learning
for further shortlisting keywords (as in the original paper), in
our implementation an expert chooses 3-4 best words man-
ually. This query on executed against the Google places col-
lection returns answer entities instead of documents.

We randomly select 300 new unseen questions (differ-
ent from the questions used in the previous section), from
a tourism forum website and manually remove 105 of those
that were not entity-seeking. The remaining 195 questions
forms our test set. Our annotators manually check each
entity-answer returned by the systems for correctness. Inter-
annotator agreement for relevance of answers measured on
1300+ entities from 100 questions was 0.79. Evaluating
whether an entity answer returned is correct is subjective
and time consuming. For each entity answer returned, anno-
tators need to manually query a web-search engine to eval-
uate whether an entity returned by the system adequately
matches the requirements of the user posting the question.
Given the subjective and time consuming nature of this task,
we believe 0.79 is an adequate level of agreement on entity
answers.

MSEQ-QA: Results Results: Table 5 reports Accu-
racy@3, which gives credit if any one of the top three an-
swers is a correct answer. We also report Mean Reciprocal
Rank (MRR). Both of these measures are computed only
on the subset of attempted questions (any answer returned).
Recall is computed as the percentage of questions answered
correctly within the top three answers over all questions. In
case the user question requires more than one entity type7,
we mark an answer correct as long as one of them is at-
tempted and answered correctly. Note that these answers are
ranked by Google Places based on relevance to the query.

7A question can ask for multiple things, eg., ‘museums’ as well
suggestions for “hotels”.

As can be seen, the use of our semantic labels (MSEQ-QA)
results in nearly 17 point higher accuracy with a 16 point
higher recall compared to WebQA (manual), because of a
more directed & effective query to Google Places collection.

Overall, our semantic labels based QA system (MSEQ-
QA) answers approximately 48% of the questions with an
accuracy of 57% for this challenging task of answering
MSEQs.

MSEQ-QA : Qualitative Study and Error Analysis Ta-
ble 6 presents some examples of questions answered by the
MSEQL based QA system. As can be seen our system sup-
ports a variety of question intents/entities and due to our
choice of an open semantic representation, we are not lim-
ited to specific entity types, entity instances, attributes or lo-
cations. For example, in Q1 the user is looking for “local
dinner suggestions” on Christmas eve, and the answer en-
tity returned by our system is to dine at the “St. Peter Stift-
skulinarium” in Salzburg, while inQ2 the user is looking for
recommendations for “SOM tours” (Sound of Music Tours).
Q3 is incorrect because the entity returned does not fulfill
the location constraints of being close to the “bazar” while
Q5 returns an incorrect entity type. Q4 is a complicated
question with strict location, budget & attribute constraints.
Error Analysis: We conducted a detailed error study on
105 of the test set questions and we find that approximately
58% of questions were not answered by our system due
to limitations of the knowledge source while approximately
42% of the recall loss in the system can be traced to errors
in the semantic labels.

Conclusion and Future Work
We have presented the novel task of understanding entity-
seeking multi-sentence questions. MSEQs are an important
class of questions, as they appear frequently on online fo-
rums. They expose novel challenges for semantic parsing as
they contain multiple sentences requiring cross-sentence in-
teractions and also need to be built in low data settings due
to challenges associated with sourcing training data. We de-
fine a set of open semantic labels that we use to formulate a
multi-sentence question parsing task.

Our solution consists of sequence labeling based on a
BiDiLSTM CRF model. We use hand-engineered features,
inter-sentence CCM constraints, and partially-supervised
training, enabling the use of crowdsourced incomplete anno-
tation. We find these methods results in a 7pt gain over base-
line BiDiLSTM CRFs. We further demonstrate the strength
of our work by applying the semantic labels towards a novel
end-QA task that returns entity answers for MSEQs from a
web API based unstructured knowledge source that outper-
forms baselines.

An error analysis on our test set suggests the need for a
deeper IR system that parses constructs from our semantic
representation to execute multiple sub-queries. As another
direction of work, we would like to train an end to end neural
system to solve our QA task. This would require generating
a large dataset of labeled QA pairs which could perhaps be
sourced semi-automatically using data available in tourism
QA forums.



No. Question Entity Type System Answer
1 My family and my brother’s family will be in Salzburg over Christmas 2015. We have arranged to do the Sleigh

Ride on Christmas day but are keen to do a local style Christmas Day dinner somewhere. Any suggestions?
Special Dinner
place

St. Peter Stiftskulinarium,
Sankt-Peter-Bezirk 14, 5020

Salzburg

2 Heading to Salzburg by car on Friday September 18th with my wife and her parents (70’s) and trying to make the
most of the one day. Thinking about a SOM tour, but not sure what the best tour is, not a big fan of huge groups or
buses, but would sacrifice for my Mother in Law (LOL). Also thinking about Old Town or the Salzburg Fortress.
Any suggestions? Where to park to have easy access as well as a great place for dinner.Thanks so much!

Tour
Bob’s Special Tours, Rudolfskai

38, 5020 Salzburg, Austria

3 I am planning to visit Agra for 2 days in mid Dec with my friends.My plan is to try some street food and do
some local shopping on day 1 and thus wish to stay in a good budget 3 star hotel (as I wont be spending much
time in the hotel) at walking distance from such street foodlocal shopping market.Then on the 2nd day, I want to
just relax and enjoy the hotel.(I have booked a premium category hotel, Radisson Blu for this day hoping for a
relaxed stay)Please suggest some good hotel or market around which I should book an hotel for my first day.

Hotel with location
constraints

Hotel Taj Plaza, Agra, Taj Ma-

hal East Gate, Near Hotel Oberoi

Amar Vilas, VIP Road, Shilpgram,

Agra, Uttar Pradesh 282001, India

4. Hi,I am looking for a good hotel in Shillong (preferably near Police bazar) which would offer free wifi, spa and
are okay with unmarried couples. My budget is 3k maximum. please suggest the best place to stay.

Hotel with loca-
tion and budget
constraints

Hotel Pegasus Crown, Ward’s

Lake Road, Police Bazar, Shillong,

Meghalaya 793001, India ;

Table 6: Some sample questions from our test set and the answers returned by our system. Answers in green are identified as
correct while those in red are incorrect.
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Mittal, A. R.; and Özcan, F. 2016. Athena: an ontology-
driven system for natural language querying over rela-
tional data stores. Proceedings of the VLDB Endowment
9(12):1209–1220.
Seo, M. J.; Hajishirzi, H.; Farhadi, A.; Etzioni, O.; and Mal-
colm, C. 2015. Solving geometry problems: Combining text
and diagram interpretation. In EMNLP, 1466–1476. The
Association for Computational Linguistics.
Shen, Y.; Rong, W.; Jiang, N.; Peng, B.; Tang, J.; and Xiong,
Z. 2015. Word embedding based correlation model for ques-
tion/answer matching. arXiv preprint arXiv:1511.04646.
Sun, H.; Ma, H.; Yih, W.-t.; Tsai, C.-T.; Liu, J.; and Chang,
M.-W. 2015. Open domain question answering via semantic
enrichment. In Proceedings of the 24th International Con-
ference on World Wide Web, WWW ’15, 1045–1055. New
York, NY, USA: ACM.
Tan, M.; Xiang, B.; and Zhou, B. 2015. Lstm-based deep
learning models for non-factoid answer selection. CoRR
abs/1511.04108.
Trischler, A.; Wang, T.; Yuan, X.; Harris, J.; Sordoni, A.;
Bachman, P.; and Suleman, K. 2016. Newsqa: A machine
comprehension dataset. arXiv preprint arXiv:1611.09830.



Trivedi, P.; Maheshwari, G.; Dubey, M.; and Lehmann, J.
2017. A corpus for complex question answering over knowl-
edge graphs. In Proceedings of 16th International Semantic
Web Conference - Resources Track (ISWC’2017).
Vtyurina, A., and Clarke, C. L. 2016. Complex questions:let
me google it for you. In Proceedings of the second Web QA
Workshop WEBQA 2016.
Wang, D., and Nyberg, E. 2016. Mu oaqa at trec 2016 liveqa:
An attentional neural encoder-decoder approach for answer
rankin. In Proceedings of The Twenty-Fifth Text REtrieval
Conference, TREC 2016.
Xu, K.; Reddy, S.; Feng, Y.; Huang, S.; and Zhao, D. 2016.
Question Answering on Freebase via Relation Extraction
and Textual Evidence. In Proceedings of the Association for
Computational Linguistics (ACL 2016). Berlin, Germany:
Association for Computational Linguistics.
Yang, B., and Mitchell, T. M. 2017. A joint sequential
and relational model for frame-semantic parsing. In Pro-
ceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017, 1247–1256.
Yih, W.; Chang, M.; He, X.; and Gao, J. 2015. Seman-
tic parsing via staged query graph generation: Question an-
swering with knowledge base. In ACL (1), 1321–1331. The
Association for Computer Linguistics.
Yin, P.; Duan, N.; Kao, B.; Bao, J.; and Zhou, M. 2015.
Answering questions with complex semantic constraints on
open knowledge bases. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge
Management, CIKM ’15, 1301–1310. New York, NY, USA:
ACM.
Zettlemoyer, L. S. 2009. Learning to map sentences to
logical form. Ph.D. Dissertation, Massachusetts Institute of
Technology.
Zhang, K.; Wu, W.; Wang, F.; Zhou, M.; and Li, Z. 2016.
Learning distributed representations of data in community
question answering for question retrieval. In Proceedings of
the Ninth ACM International Conference on Web Search and
Data Mining, WSDM ’16, 533–542. New York, NY, USA:
ACM.
Zhou, J., and Xu, W. 2015. End-to-end learning of semantic
role labeling using recurrent neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long
Papers), volume 1, 1127–1137.


