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11.1 Basic Discrete Probability Theory

Let Ω be a set and P (Ω) be its power set. Ω can be finite or infinite.

Definition 11.1 A set Σ ⊆ P (Ω) is called a σ − algebra over Ω if

• Ω ∈ Σ

• A ∈ Σ⇒ Ac ∈ Σ

• For a sequence A1, A2, . . . ,∈ Σ, we have ∪Ai ∈ Σ

The tuple (Ω,Σ) is called a measurable-space. For example:

• {φ,Ω} is a σ − algebra

• P(Ω) is a σ − algebra

It also holds:
⋂
i

Ai ∈ Σ if Ai ∈ Σ for all i. Note that intersection is over a countable number of sets.

Definition 11.2 Let (Ω,Σ) be the measurable space. A function µ : Σ→ [0,∞) is called a measure if:

• µ(φ) = 0

• For all pairwise disjoint sets A1, A2, . . . we have µ(A1 ∪A2 . . .) =
∑

µ(Ai)

Definition 11.3 Let P be measure of (Ω,Σ). P is called a probability measure if P : Σ → [0, 1] and
P (Ω) = 1. (Ω,Σ, P ) is called a probability space.

Definition 11.4 A probability space (Ω,Σ, P ) is called discrete if Ω is discrete and finite.
In a discrete probabilty space P the vector p = (p(ω)) is called the stochastic vector, p(ω) = P ({ω}) ∀ω ∈ Ω.

A laplacian probability space (Ω,Σ, P ) consists of Ω finite and P ({ω}) = 1/|Ω| ∀ω ∈ Ω. In this case Σ is
the power set of Ω. A probability measure is also called a distribution.
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Proposition 11.5 Let Ω be a finite set and p a vector such that p = (p(ω))ω∈Ω and
∑
ω∈Ω

p(ω) = 1 and

p(ω) ∈ [0, 1] then P ({ω}) = p(ω) ∀ω ∈ Ω is a probability measure on Ω.

Proof: For A ∈ P (Ω) define P (A) =
∑
ω∈A

p(ω).

Binomial Distribution: let n ∈ N, 0 < p < 1,Ω = {0, 1, 2, . . . , n}, p(ω) =
(
n
ω

)
pω(1 − p)n−ω, ω ∈ Ω.

P : (p(ω))ω∈Ω is a stochastic vector. B(n, p) is the probability measure defined by P and is called the
binomial distribution.

For A ⊆ Ω, B(n, p)(A) =
∑
ω∈A

pω(1− p)n−ω.

Proposition 11.6 Let (Ω,Σ, P ) be a probability space and A1, A2, . . . ∈ Σ and B ∈ Σ. Then,

• P (Ac) = 1− P (A)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• For A ⊆ B,P (B/A) = P (B)− P (A)

• For A ⊆ B,P (A) ≤ P (B)

• For A1, A2, . . . , An ∈ Σ, we have P (

n∑
i=1

Ai) ≤
n∑

i=1

P (Ai)

Definition 11.7 A ∈ Σ is called an event.

Definition 11.8 Let (Ω,Σ, P ) be a probability space and A,B ∈ Σ with P (B) > 0, then P (A/B) = P (A ∩
B)/P (B) is the conditional probability of A assuming the event B or condition on B.

Definition 11.9 Let (Ω,Σ, P ) be a probability space. Let A1, A2, . . . , An ∈ Σ.

• Let k ∈ {2, . . . , n}. A1, . . . , An are called k-wise independent, if for any choice of k sets B1, B2, . . . , Bk

from A1, . . . , An, P (

k⋂
i=1

Bi) =

k∏
i=1

P (Bi).

• A1, . . . , An are (mutually) independent if for all X ⊆ {1, 2, . . . , n}, we have P (
⋂
i∈X

Ai) =
∏
i∈X

P (Ai).

In particular P (

n⋂
i=1

Ai) =

n∏
i=1

P (Ai).

Definition 11.10 Let (Ω,Σ, P ) be a probability space. A function X : Ω→ R is called a random variable,
if for all open sets O ⊆ R, X−1(O) ∈ Σ.
For a finite probability space any X : Ω→ R is automatically a random variable because Σ = P (Ω).

Notations: By P (X ≤ x), we mean P ({ω|X(ω) ≤ x}). Similarly P (X = x) = P ({ω|X(ω) = x}).(X-
random variable)
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Definition 11.11 Let (Ω,Σ, P ) be a finite probability space and X,Y : Ω → R be random variables. We
can say X,Y are independent if for any choice of x ∈ X(Ω), y ∈ Y (Ω), we have P (X = x, Y = y) = P (X =
x)P (Y = y).
Equivalently, P (X−1(A) ∩ Y −1(B)) = P (X−1(A))P (X−1(B)) ∀A ⊆ X(Ω), B ⊆ Y (Ω). This definition is
extendable to n-random variables.

Problems:
1. Let (Ω,Σ, P ) be a probability space, A,B ∈ Σ independent. Show,

• A,Bc are independent

• Ac, Bc are independent

2. Let (Ω,Σ, P ) be a laplacian probability space, X,Y : Ω → R be random variables. Given that X(1) =
2, X(2) = 1, X(3) = 7, Y (1) = 1, Y (2) = 5, Y (3) = 1, show that X and Y are not independent.


