CSL851: Algorithmic Graph Theory

Semester I 2013-2014

Lecture 9: August 21

Lecturer: Naveen Garg Scribes: M S K Swaroop

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

9.1 2k+1 Edge connected graphs

In the previous lecture we had given a procedure to obtain the 2k edge connected graphs now lets see the procedure for obtaining 2k + 1 edge connected graphs which is as follows:

Start with a 2k + 1 edge connected graph of 2 vertices

Figure 9.1: For k=1

and repeat any one of the following operations

- Add a new edge.
- Pinch any set of k edges to form a new vertex and add an edge from newly created vertex to an existing vertex.

Claim 9.1 Every graph obtained by above process is 2k + 1 edge connected.

Proof: The proof is similar to the one that has been done in last class for 2k edge connected graphs using cuts.

Claim 9.2 Every 2k + 1 edge connected graph cannot be obtained by above process.

Proof: It can be seen from the below graph which is a 3 edge connected graph with 4 vertices and cannot be obtained by above process.

9-2 Lecture 9: August 21

Figure 9.2: 3 Edge connected

9.2 Lovasz's Splitting Off Theorem

Theorem 9.3 Given G=(V,E) is a k edge connected graph with $k \ge 2$. $s \in V$, deg(s) is even and $(s,t) \in E$, there exists an edge $(s,u) \in E$ such that between every pair of vertices $(u,v) \in (V-\{s\}) \times (V-\{s\})$ there are k-edge disjoint paths in $G'=(V,E\setminus\{(s,t),(s,u)\}\cup(t,u))$.

Proof: The theorem is equivalent to saying that there exists a neighbour of s, u such that after replacing $\{(s,t),(s,u)\}$ with (t,u)(split off operation) every subset of $V-\{s\}$ has cut $\geq k$.

Figure 9.3:

By contradiction if we couldn't split then there exists a subset of $V - \{s\}$ whose cut becomes < k after split off. Observe that subsets which include only either t or u cannot have cut less than k after split off, since the number of edges across the set remains same(one edge is removed and one edge is added in the split off). So we cannot split off $\{(s,t),(s,u)\}$ if there exists a set $X_u \subset V - \{s\}$ which includes t and u such that $\delta_E(X_u)$ is t0 or t1, since number of edges across the set t2 decreases by 2 after split off.

Lecture 9: August 21 9-3

Figure 9.4:

 X_u is known as witness set of u, since it is a witness to the fact that (s,t),(s,u) cannot be split and also X_u is strict subset of $V - \{s\}$ because it is actually a cut which should separate any two vertices in $V - \{s\}$. So by our contradiction every neighbour of s has a witness set associated with it.

How many such witness sets are there for given t?

• case 1: Suppose we have one witness set X that covers all neighbours of s as shown in the figure 9.5.

Figure 9.5:

if we consider the set $XU\{s\}$ it has cut < k, since $\delta(X)$ is at most k+1 and deg(s) at least k. Its a contradiction because the original graph is k edge connected.

• case 2: Suppose we have two witness sets A, B that covers all neighbours of s.

A and B share at least one common vertex t and let $|neighbours(s) \cap A| \ge |neighbours(s) \cap B|$ if we consider the set $A \cup \{s\}$ then the number of edges across it can be given by

$$\delta(A) - |neighbours(s) \cap A| + |neighbours(s) \cap B| - |neighbours(s) \cap A \cap B|$$

1. if $|neighbours(s) \cap A \cap B| \ge 2$ then $\delta(A \cup \{s\}) < k$, since $\delta(A)$ is at most k+1

9-4 Lecture 9: August 21

Figure 9.6:

2. if $|neighbours(s) \cap A \cap B| = 1$ then $|neighbours(s) \cap A| > |neighbours(s) \cap B|$ since deg(s) is even and A, B covers all neighbours of s. Hence $\delta(A \cup \{s\}) < k$.

Figure 9.7:

So we formed a set with cut < k which is a contradiction because the original graph is a k edge connected.

• case 3: Suppose we have at least three witness sets A, B, C these will have the following properties

$$\begin{split} t \in A \cap B \cap C \Rightarrow A \cap B \cap C \neq \emptyset \\ A - (B \cup C) \neq \emptyset \\ B - (A \cup C) \neq \emptyset \\ C - (A \cup B) \neq \emptyset \end{split}$$

since any pair of two sets couldn't cover all the neighbours of s.

Lecture 9: August 21 9-5

Figure 9.8:

If we consider the edges across the sets A, B, C, $A \cap B \cap C$, $A - (B \cup C)$, $B - (A \cup C)$, $C - (A \cup B)$ we can deduce the following inequality

$$\delta(A) + \delta(B) + \delta(C) \ge \delta(A \cap B \cap C) + \delta(A - (B \cup C)) + \delta(B - (A \cup C)) + \delta(C - (A \cup B)) + 2$$

This inequality can be proved by considering the edges that correspond to cuts of $A \cap B \cap C$, $A - (B \cup C)$, $B - (A \cup C)$, $C - (A \cup B)$ and looking at the number of times each gets counted on both sides of the inequality. each edge is counted at least as many times on the left-hand side as it is counted on the right-hand side, in fact there is at least one edge(s - t) that is counted three times on the left hand side and once on the right hand side. so the above inequality holds.

Figure 9.9:

Now observing the fact that A, B, C have cut size at most k+1 and $A \cap B \cap C$, $A-(B \cup C)$, $B-(A \cup C)$, $C-(A \cup B)$ have cut size at least k the above inequality implies

$$3(k+1) \ge 4k + 2 \Rightarrow k \le 1$$

which is a contradiction since k was assumed to be at least 2.

9-6 Lecture 9: August 21

9.3 Edge connectivity augmentation

This is one of the applications of Splitting off theorem

Problem 9.4 Given a graph G=(V,E) find minimum set of edges $E^{'}$ such that $G^{'}=(V,E\cup E^{'})$ is k-edge connected.

Hint: Suppose we were told that the number of edges incident to v in E'. i.e given $deg_{E'}(v)$.

Now create a new node s and add number of edges form every vertex v to s given by $\deg_{E'}(v)$. let this graph be $G^{''}$

Figure 9.10:

The graph $G^{''}$ is k-edge connected because for every path p between u and v in $G^{'}$ there is a corresponding path $p^{'}$ in $G^{''}$ in which each edge $(a,b) \in E^{'}$ is replaced by distinct pair of edges (a,s) and (s,b) and we were told that adding edges in $E^{'}$ would give a k-edge connected graph. So there are k-edge disjoint paths between every pair of vertices in $G^{''}$.

Figure 9.11:

Now if we use splitting off theorem to $G^{''}$ and remove s then the resulting graph is k-edge connected with $|E^{'}|$ additional edges.