CSL851: Algorithmic Graph Theory Semester I 2013-14

Lecture 4: August 5
Lecturer: Naveen Garg Scribes: Utkarsh Ohm

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

4.1 Min-weight perfect matching

In this lecture, we discuss the problem of finding the minimum weight perfect matching in a weighted bipartite
graph. Let us start with assuming that we have an algorithm to find the min-weight perfect matching. In
the first section of the lecture, we learn how to use this algorithm in solving other problems of weighted
general graphs. In the second section, we discuss the algorithm itself.

4.1.1 Min-weight perfect matching problem as a general problem
4.1.1.1 Finding the max-weight perfect matching

Consider a graph G with a min-weight perfect matching M and weight w(e) V edge e in G. How can we find
the max-weight perfect matching for this graph? Consider the algorithm shown in Figure 4.1.

Convert

min-wt p.m.

algorithm

w=C-w

Figure 4.1: M: Max-weight perfect matching

Claim 4.1 M is also the maz-weight perfect matching of G

Proof: Let C denote the maximum edge weight in G i.e. C' = max w(e) and n be the size of M. The weights
ec

of the edges are changed such that w'(e) = C' — w(e) Ve € G. Then, the algorithm to find the min-weight
perfect matching is run on G with edge weights w’. Summing across edges in M, we get

S we)=Cxn— 3 wle)

ecM ecM

4-1

4-2 Lecture 4: August 5

We know that > w(e) is the minimum possible weight for all perfect matchings. Since both weight sum-
ecM
mations are over the same matching M, if the minimum value is subtracted from a constant value, the

resulting number would be the maximum possible value i.e. > w’(e) is the maximum weight for all perfect
ecM
matchings. Hence, M is also the max-weight perfect matching in G.]

4.1.1.2 Finding the min-weight maximum matching

Consider a graph G with non-zero weights w(e) V edges e in G. Let C denote the maximum edge weight in
Gie C= max w(e). How can we find the min-weight maximum matching for this graph? Consider the
ec

algorithm shown in Figure 4.2. M’ is the min-weight perfect matching of G’ as described in the figure and
let 2 * n be the number of nodes in G’. Note that the large weight of the dummy edges refers to a weight
> C *n and all of them have the same weight.

r N

ﬁ 1 Convert -1

Convert

1. add dummy nodes GI '\M‘I

2. add dummy edges

with large weights

E
ﬁ

Some algorithm

P s —

Convert™1

remove dummy
nodes & edges

—l—> min-wt p.m. M remove dummy "
algorithm :> nodes & edges

a

Figure 4.2: M: Min-weight maximum matching

Claim 4.2 M, as obtained from Fig 4.2, is a mazimum matching of G

Proof: Assume that there is some matching N (different from M) which is the maximum matching of G

obtained by some other algorithm as shown in Fig 4.2. So, N matches more nodes than M in graph G i.e.

IN| > [M]

(4.1)

Let N’ and M’, respectively be the corresponding perfect matchings in G’ such that M’ is the min-weight
perfect matching. Since n — |M| dummy edges are picked in M’ and n — |N| in N’| we get

(n—|M\)*C*n<Zw’(e)<(n—|M|+1)*C’*n (4.2)
ec M’
(n=IN)# Cxn < 3 w(e) < (0= N[+ 1) Cxn (43)
ecN’
From definition of N’ and M’ and because M’ is min-weight perfect matching of G’, we get
S w'(e)< Y wie) (4.4)

ec M’

ecN’

Lecture 4: August 5 4-3

By (4.2),(4.3),(4.4) we get

(n—|M)*xCxn<(n—|N|+1)«C*n=|M|>|N|—1=|N|<|M|+1=|N|>|M| (4.5)

We have reached a contradiction with (4.1). Hence, M and not N, is a maximum matching of G.

Claim 4.3 M is a min-weight maximum matching of G

Proof: After Claim 4.2 we only need to prove that M is min-weight among all possible maximum matchings.
Assume that N (different from M), as obtained from another algorithm in Fig 4.2, is another maximum
matching like M but is in fact, the min-weight maximum matching in graph G.

Z w(e) > Z w(e) (4.6)

ecM eeN
[M| = |N| (4.7)

Let N’ and M’, respectively be the corresponding perfect matchings in G’. The algorithm ensures that M’ is
the min-weight perfect matching, we get

> w'e) < Y wie) (4.8)

ecM’ e€eN’
IM'| = |N'|=n (4.9)

By (4.7) and (4.9), M’ and N’ both consist of equal number of dummy edges which have the same large
weight value i.e.

doowle)= > we) (4.10)

e€cM/'—M e€EN'—N
From definition of w’(e) we know
if G
w'(e) = wle) . Les (4.11)
large weight > C' xn if e is a dummy edge

Using above definition, we can add (4.6) and (4.10) to get Y. w'(e) > > w'(e)
e€M’ eEN'

We have reached a contradiction with (4.8). Hence, M and not N, is a min-weight maximum matching of G.

4.1.1.3 Finding the min-weight perfect matching in a graph with both positive and negative
weights

Consider a graph G with both positive and negative edge weights. Remove the positive weight edges from G
and make the weights of the negative weight edges positive by miltiplying by -1. Now add dummy nodes as

4-4 Lecture 4: August 5

in previous problem and dummy edges between all nodes such that their weights are 0. Let this new graph
be G’.

Exercise: Prove that the max-weight perfect matching of G’ (which can be found using Section 4.1.1.1) can
be used to find the min-weight perfect matching of G.

4.1.2 The min-weight perfect matching algorithm for bipartite graphs

Consider graph G with 2 partitions U and V. If |U| # |V then dummy edges with a large weight as defined
in section 4.1.1.2 are added to make the partitions equal in size and let this graph be G’. This ensures that
G’ has perfect matching(s) between U and V. Let us denote a perfect matching in G’ by M. We can now
model the min-weight perfect matching problem into an optimisation problem.

min Z ZTeWe (4.12)

ecG’
1 ifee M,
S Te = { 0 otherwise. (4.13)
Y ze=1;YoeUV (4.14)
e€d(v)
0<z.;VeeG (4.15)

The dual for this L.P is as follows.
max Z Yuw (4.16)

St Yu + Yp S we Ve = (u,v) ;Yu e U Vv €V (4.17)

Definition 4.4 An edge e = (u,v) is called a tight edge if we = Yy + Yo

4.1.2.1 The algorithm inspired by the dual LP

The idea is to pick any dual solution such that subgraph of tight edges has a perfect matching. Formally
the algorithm is:

Start with a dual solution
until perfect matching found in subgraph of tight edges do
if tight edges have no perfect matching then
find Hall set and modify dual values accordingly, expanding the subgraph
endif

Let us consider the example given in Fig 4.3(a). Start with dual values such that y, = 0 Yo € V and
Yy = min{w, : e € §(u)} Yu € U. This gives us a graph which has atleast one tight edge for each vertex in
U. Start from a vertex in U and start building alternating trees (as done in first lecture) to match edges in
the subgraph of tight edges. Say, we first picked us and matched it to vy. Next we picked us and matched
it to vs. Next we picked u; but found a hall set. So far we have got Fig 4.3(b) and we can cannot find an
alternating path in Fig 4.4(a). There is no perfect matching in the subgraph of tight edges and we have

Lecture 4: August 5

ul

u2

u3

ud

g vl

v2

v3

v

ul 2 3 80 vl

uz 4 0 v2
5

u3d 1 0 w3

ud 2 0 vd

Figure 4.3: (a): original graph; (b): graph with a dual solution

4-5

= tight and matche
— tight but unmatcl

not tight

found a hall set (in this case u; U us). So now, we modify dual values in such a way that we can grow our
subgraph of tight edges. Starting from root of alternating tree we alternately add and subtract 6. We start
by trying very small values for § and stop as soon as value of § has caused us to make an edge tight from
among all the untight edges incident on vertices of alternating tree. Fig 4.4(b) demonstrates this event for
6 = 1. Since u; now has a tight but unmatched edge, it is matched to v;. This leaves our graph at Fig
4.4(d). Continuing this approach, we finish with Fig 4.5(g) as the min-weight perfect matching of weight 15.

ul

0 w2

v3 ud g
P
2+68 3 0-6 1+6

0 vd

pvl

ul

0

ul

K_

0

v3 u3
|
3 -1 2

0 w2

0 vd

vl

0 w2

v3 u3
|
1 2

vl

ul 3 0 vl

u2 4 0 w2
5

ui 2 -1v3
2

ug 2 0 wva

0 vd

Figure 4.4: (a),(b),(c): modification of dual values in alternating tree; (d): improved dual solution

4.1.2.2 The algorithm’s correctness

Claim 4.5 The above algorithm terminates to give the min-weight perfect matching.

Proof: Whenever we find a hall set, the number of vertices of U in the alternating tree is 1 more than the
number of vertices in V. Since, in the alternating tree, the dual values of vertices of U is increased by J and
those of V is decreased by 4, and the dual values of vertices outside the alternating tree does not change, the
change in sum of all dual vaues is +J. Hence the dual increases after every iteration of the alogrithm’s loop.

4-6 Lecture 4: August 5

ud v3 v2 u2
e—=e ud v3 u3
248 *—a—— g 0-6 445
0 v2 6+6 45 5+ Tg ul 3 Ovi
ud v3 uld g 0 v4
e 2 4 2
346 1.8 2+6 v2 u2 425 v
us v3 u3d
0 va4 *— -1 5 >
7 5 6 u3 6 -5”3
v2 u2
ud v3 u3 0 vd 2
—— 6 0 4 v2 u2 ud 7 ova
B 4 5 ud v3 ul
-1 5
0 va4 7 5 6
0 v4

Figure 4.5: (a)-(f): modification of dual values in alternating tree; (g): min-weight perfect matching

Since the sum of the dual values is bounded by sum of weights of all edges, the algoithm has to terminate.
Since this algorithm solves the dual LP and terminates, its correctness is guaranteed. [|

It must be noted that the primal-dual approach adopted here serves as a general framework to reduce
weighted graph problem to a unweighted one.

4.1.2.3 The algorithm’s time complexity

Assume that |U| = |[V| = n and there are m edges in the original graph.

1. The initial dual solution can be constructed in O(m) time.

2. Starting from any one vertex, building an alternating tree, finding hall set and modifying dual values
can take O(n) time in the worst case, if we have to check all vertices. We assume that we can store
the value of min weight incident on each vertex using data structures like heaps.

Step 1 is done once in the entire algorithm while step 2 is executed for each vertex in U i.e. n times. Hence,
time complexity is O(m + n?).

4.1.3 The min-weight perfect matching algorithm for general graphs

The bipartiteness of the graph was exploited by the previous section’s algorithm, only in confirming the
existence of a hall set. So intuitively, we can see that this algorithm could be extended to work on general
graphs too. But the algorithm fails in a graph like that in Fig 4.6.

The primal (also, the correct) solution is 2 + large number (for the dotted dummy edges) whereas the dual
solution is 3 (= % % 6). This is due to the odd connected components (with more than 3 vertices) of the
graph. A set of Odd set constraints are added to the LP to ensure that at least one vertex of each odd
component in a graph is matched outside the component. Hence the LP formulation for general graph G
with vertices V is as follows.

Lecture 4: August 5 4-7

b #"*"’0 .
1/2 w"’ %’0 1/2
1%%1 15‘31 1:;;-\1 15*:1
1 7 1 I _ 17
7 1 2 1 /2 2 1 1/2

Figure 4.6: LP algorithm fails

min Z TeWe (4.18)
ecG

s.t. Z Te=1;YveV (4.19)

e€d(v)
0<z.;VeeG (4.20)
> @e>1;VS CV,[S|odd > 3 (4.21)

e€d(S)
The dual for this L.P is as follows.
max Z Y + max Z Ys (4.22)
weV SCV,|S|odd>3
St Yy + Yo + Z ys < w, ; Ve = (u,v) ;Yu,v € V; VS CV,|S|odd > 3 (4.23)
e€s(S)

ys > 0;VS CV,|S|odd >3 (4.24)

4.1.4 Further reading

Read lecture Chandra Chekuri’s notes at http://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/
Lecturel0.pdf.

http://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture10.pdf
http://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/Lecture10.pdf

	Min-weight perfect matching
	Min-weight perfect matching problem as a general problem
	Finding the max-weight perfect matching
	Finding the min-weight maximum matching
	Finding the min-weight perfect matching in a graph with both positive and negative weights

	The min-weight perfect matching algorithm for bipartite graphs
	The algorithm inspired by the dual LP
	The algorithm's correctness
	The algorithm's time complexity

	The min-weight perfect matching algorithm for general graphs
	Further reading

