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2.1 Matching in General Graphs

In the case of bipartite graphs, there is an easy characterization on the existance of perfect matching in the
graph. Now, we give a similar characterization for the existance of perfect matching in general graphs.

Let S C V be any subset of V. Consider the graph on the vertex set V' \ S. This graph, Gy g, is obtained
by removing vertices in S from V and the edges associated with them. The edges in this subgraph would
exist only between the connected components formed by removing vertices and the set of vertices in S. Let
us denote the set of odd components in Gy\g by Co(S).

Definition 2.1 For any S CV, S is called a Tutte set if |C,(S)| > |S].

Theorem 2.2 [Tutte’s Theorem] Graph G has a perfect matching if and only if VS C V., |Co(S)| < |S| (G
does not have a Tutte set).

Proof: [only if] Assume that G has a perfect matching. We need to prove that G does not have a Tutte
set. We prove this by contraposition. Assume that there exists a Tutte set in G. To prove, G can’t have a
perfect matching. For perfect matching, one vertex in each odd component has to be matched with a vertex
in S. Since, the number of odd components are more than the number of vertices in S then some vertices of
these odd components have to remain unmatched. Therefore, G can not have a perfect matching.

[if] Assume that G does not have a Tutte set. To prove that G has perfect matching. Again we proof this
by contraposition. We assume there exists a vertex which can not be matched. We will show the existance
of a Tutte set in the graph.

We provide a constructive version of the proof here. Starting from an unmatched vertex (initially all the
vertices are unmatched, pick any vertex) we construct an alternating tree. The procedure of building an
alternating tree is mentioned in the following. We consider all unmatched edges from an unmatched vertex
and only one matched edge from each matched vertex. In the alternating tree, vertices are leveled even or
odd depending on the length of the alternating path from the starting unmatched vertex to that vertex. We
mark o against the vertices of odd level and mark e for even level vertices. Unlike in the case of bipartite
graphs, edges between vertices in the same level are allowed for general graphs.

A typical alternating tree for an unmatched vertex in shown in Figure 2.1.

We search for augmenting paths in the alternating tree built for the starting unmatched vertex. Whenever
we come across an augmenting path, we use that augmenting path to increase the size of matching by 1 and
continue with the alternating tree of another unmatched vertex. We also look for a special structure in the
alternating tree called blossom.

Definition 2.3 A blossom is an odd cycle in which only one vertex is unmatched and the remaining vertices
are matched using (matched) edges of the cycle.
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Figure 2.1: An alternating Tree
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Figure 2.2 shows a blossom.

Figure 2.2: A blossom

Edmond’s polynomial time algorithm (blossom algorithm) for finding perfect matchings in non-bipartite
graphs works by detecting blossoms in an alternating tree for some unmatched vertex. The idea is to find
blossoms in the alternating tree and shrink it (replace the blossom by an unmatched vertex). This process
is repeated in the modified graph.

If there exists an unmatched edge between two vertices of an even level or if there exists a matched edge
between two vertices of an odd level, then they form a blossom. Blossoms in an alternating tree are shown
in Figure 2.3.

Whenever a blossom is detected in an alternating tree, the blossom is contracted and replaced by an un-
matched vertex. A typical blossom contraction is shown in Figure 2.4.

The algorithm for finding perfect matching in a non-bipartite graph is roughly the following. Search for
augmenting paths in the alternating trees. If a blossom is detected, shrink the blossom and continue. When
an augmenting path is found, increase the size of matching and start with another unmatched vertex. We
repeat this process till there are augmenting paths or blossoms in the graph.

Let’s assume a blossom is detected in a graph G. Let G’ be the modified graph when the blossom is contracted
in G. Next, we prove a theorem establishing the equivalence between finding perfect matching in G and
perfect matching in the modified graph G'.

Theorem 2.4 There erists a perfect matching in the contracted graph (G') if and only if there exists a
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Figure 2.3: Blossoms in alternating tree
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Figure 2.4: Blossom contraction
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perfect matching in the original graph (G). Here G’ is obtained by contracting a blossom in G.

Proof: Let M be the matching in G and M is not a perfect matching. Then, there exists an augmenting

path P in G. We prove that if G has an augmenting path P then G’ also has an augmenting path P’.
Therefore, G’ is also not a perfect matching. The other direction is proved in similar fashion.

[if] Assume G has an augmenting path. To prove that G’ also has an augmenting path.
We consider two cases.

e Case 1: The augmenting path in G is disjoint with the blossom. Therefore, even when the blossom is
contracted, the augmenting path will be present in G’ as well.

e Case 2: The augmenting path P in G overlaps with the blossom B. We observe that at least one of the
endpoints of P, let’s call it s, is not in B. Let ¢ be the first vertex where P intersects B. Then, even
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after contraction of B, (s — t) will be part of an augmenting path in G’. Therefore, an augmenting
path exists in G'.

[only if] Assume G’ has an augmenting path. To prove that the graph G also has an augmenting path.

Let us assume that G’ has a matching M’ and it has an augmenting path P’. Therefore, there exists some
matching N’ in G’ of greater cardinality than M’. The augmenting path P’ will cut contracted blossom B’
in G’ only at one point. Now, when this blossom is expanded to recover G from G’, edges of the blossom
can be added to generate a larger augmenting path in G. Assume that earlier matching in G was M and
the new matching is N. Therefore, |[N| = [N'|+k > |M'| +k = |M| where k > 1. Therefore, an augmenting
path exists in G. [ ]

Proof of the main theorem relies on the following reasoning. We assume that the perfect matching in the
graph G does not exist. That is there exists a vertex which can not be matched in the graph. Now, assume
that we build the alternating tree for that vertex and start finding blossoms and contracting it. Assume we
reach a stage where the alternating tree of the vertex does not have any more blossoms and also we can not
find any more augmenting paths. We can say the following things at that stage.

e There can not be any unmatched edge present between any two vertices in an even level. Had there
been such an unmatched edge, it could have formed a blossom.

e There can not be any matched edges present between any two vertices in an even level. Vertices in the
even level are reached via matched edges from the odd level vertices. Therefore, these vertices can not
have matched edges among themselves.

e Can there be any edges (matched/unmatched) present between two vertices belonging to two different
even layers? There can not be unmatched edges between vertices across two different even levels. The
reason is while building the alternating tree, we considered all the unmatched edges from the vertices
in the even levels. Therefore, the other ends of these edges have to be in odd level.

There can not be any matched edges between vertices across different even levels. The vertices in the
even level are matched except the starting unmatched vertex. Therefore, there can not be another
matched edge with that vertex.

e There are no matched edges between any two vertices in an odd level. Had there been such a matched
edge between two vertices in an odd level, they would have formed a blossom.

e Can there be any unmatched edge present between any two vertices in an odd level? They can of
course be present.

e Can there be any edges (matched/unmatched) present between two vertices belonging to two different
odd levels. Since, this is a matching, therefore, matched edges between such two vertices are not
possible. But, unmatched edges can be present between vertices across two different odd levels.

Suppose we start an unmatched vertex and build its alternating tree. We find blossoms in the tree and
shrink them. Assume that we come to a stage where there is no augmenting path or a blossom. We state
the following claim.

Claim 2.5 Consider S to be the set of vertices in the odd level of the alternating tree. We want to prove
that removing |S| vertices from G creates more than |S| odd components.

Proof: There are no edges (matched or unmatched) between vertices in even levels. The only edges to
vertices in even level are from vertices in the odd levels. Therefore, removing these odd vertices creates
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components. Now, due to construction, the number of even vertices is one more than the number of odd
vertices. The starting unmatched vertex may be a blossom. But, since a blossom has odd number of vertices,
it will be an odd component. Also, every other vertex in any even level will be a singleton (odd) component
when S is removed.

Since, the number of odd components is more than the number of vertices removed from the graph, a Tutte
set exists. Therefore, perfect matching is not possible. [ ]

Therefore, we start with a vertex which can not be matched and show that a Tutte set exists. Therefore,
the other direction is proved. [ ]



