
CSL851: Algorithmic Graph Theory Semester I,2013

Lecture 12: Sept 10, 2013
Lecturer: Dr. Naveen Garg Scribes: Yashoteja Prabhu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

12.1 Introduction to Probability

Definition 12.1 Let (Ω,Σ, P ) be a finite probability space, where Ω is a sample space which is the set of all
possible outcomes, Σ is a set of events where each event is a set containing zero or more outcomes, and P
is the assignment of probabilities to the events. Let X and Y be a Random Variables (RV) on Ω. Then,

1. Expectation of X is E[X] = Σw∈ΩX[w]P (w)

2. Variance of X is V ar[X] = E[(X − E[X])2]

3. Covariance of X and Y is Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])]

Variance measures the spread of a distribution.

Proposition 12.2 If X,Y be RVs

1. E[X] = Σx∈X(Ω)xP (X = x)

2. V ar[X] = E[X2]− E[X]2

3. E[X + Y ] = E[X] + E[Y ]

4. V ar[X + Y ] = V ar[X] + V ar[Y ] + 2 ∗ Cov[X,Y ]

5. Cov[X,Y ] = E[XY ]− E[X]E[Y ]

Theorem 12.3 Let X,Y be independent RVs

1. E[XY ] = E[X]E[Y ]

2. Cov[X,Y ] = 0

3. V ar[X + Y ] = V ar[X] + V ar[Y ]

Covariance is a weak measure of independence. Also, Cov[X,Y ] = 0 does not imply that X,Y are indepen-
dent.

Definition 12.4 Let P ∈ [0, 1] and let X be an RV
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1. X is p-bernoulli RV (or p-bernoulli distributed) if X : Ω =⇒ {0, 1} and

P (X = x) =

{
p if x = 1
1− p if x = 0

2. X is B(n, p) binomially distributed if X : Ω =⇒ {0, 1, ..., n} and
P (X = x) =

(
n
x

)
px(1− p)1−x

Proposition 12.5 Examples of bernoulli and binomial distributions.

1. p-bernoulli models the flip of a p-biased coin

2. Let X1, ...Xn be p-bernoulli RVs. Define X = Σni=1Xi and suppose Xis are independent, then, X is
B(n,p) distributed

Theorem 12.6 Let X be a RV.

1. If X is p-bernoulli, then
E[X] = p and V ar[X] = p(1− p)

2. If X is B(n,p), then
E[X] = np and V ar[X] = np(1− p)

Proof:

1. Let X be p-bernoulli.

(a)

E[X] = 1 ∗ p+ 0 ∗ (1− p)
= p

(b)

V ar[X] = E[X2]− E[X]2

= E[X]− E[X]2 // since X = X2 for p− bernoulli
= p− p2

= p(1− p)

2. Let X be B(n, p).

(a)

E[X] = E[Σni=1Xi]

= Σni=1E[Xi] // from proposition 1.12 (4)

= np

(b)

V ar[X] = V ar[Σni=1Xi] // from proposition 1.15 (2)

= Σni=1V ar[Xi] // since Xi are independent

= np(1− p)
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12.2 Concentration Inequalities

Theorem 12.7 Markov’s inequality
Let X be an RV and X ≥ 0, then,

1. For any λ > 0, P (X > λ) ≤ E[X]
λ

2. For a monotone increasing function g : R =⇒ R+, we have P (X ≥ λ) ≤ E[g(x)]
g(λ)

Theorem 12.8 Chebychev’s inequality

Let X be an RV. For any λ > 0, we have, P (|X − E[X]| ≥ λ) ≤ V ar[X]
λ2

Theorem 12.9 Hoeffding’s inequality
Let X1, ..., Xn be independent RVs with ak ≤ Xk ≤ bk for all k = 1, 2, ..., n. Let X = Σnk=1Xk and let
ck = bk − ak, then for any λ > 0,

1. P (X − E[X] ≥ λ) ≤ e
− 2λ2

Σn
k=1

c2
k

2. P (X − E[X] ≤ −λ) ≤ e
− 2λ2

Σn
k=1

c2
k

3. P (|X − E[X]| ≥ λ) ≤ 2e
− 2λ2

Σn
k=1

c2
k

Corollary 12.10 Chernoff bound
Let X1, ..., Xn be independent RVs with P (Xk = 1) = pk and P (Xk = 0) = 1 − pk, pk ∈ [0, 1], and let

X = Σnk=1Xk. Then for any λ > 0, we have, P (|X − E[X]|) ≥ λ) ≤ 2e−
2λ2

n

Corollary 12.11 Let X1, ..., Xn be independent {−1,+1} valued RVs with P (Xk = +1) = P (Xk = −1) =

0.5. Then for any λ > 0, we have, P (|X| ≥ λ) ≤ 2e−
λ2

2n

Proof: Idea of proof of Hoeffding’s theorem:

P (X − E[X] ≥ λ)

= P (et(X−E[X]) ≥ etλ)

≤ e−tλE[et(X−E[X])] // Markov′s inequality

≤ e−tλeE[t(X−E[X])] // t is chosen to obtain the tightest bound


