CSL851: Algorithmic Graph Theory Semester I 2013-14

Lecture 10: August 26

Lecturer: Naveen Garg Scribes: Abhinav Kumar

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture discusses the problem of adding as few edges as possible to an undirected graph to make it
k-edge connected. This is also known as the Edge-Connectivity Augmentation problem. It also introduces
the concept of Branchings and how to find the min-cost branching using Linear Programming.

10.1 Edge Connectivity Augmentation

Given a graph G = (V,E), consider a partition of its vertices into disjoint sets V;s. Let 6 (V;) be the number
of edges going across V;. Clearly this number should be atleast k for the graph to be k-edge connected.
Clearly the following equation holds true :

[(S (k-6(V;)))/2] < Minimum number of edges needed

=1

The division by 2 is because one edge is being counted twice i.e. one time each as going across from its
source and destination sets respectively. We will show that the following equation is indeed an equality by
doing a constructive proof (We will construct a partition for which this equality is satisfied) :

maz([(Y b (k-6(Vi)))/27) = Minimum number of edges needed

Lemma 10.1 Let E' be the set of minimum edges to be added to make the graph k-edge connected. Let
deger (v) be the number of edges incident on v in E'. Knowing the dege (v) for each vertex v we can find the
edge set E'.

Proof: For the proof refer to scribe of Lecture 9 by MSK Swaroop. [|

Let z(v) denote deges (v).
For a set of vertices U, let z(U) denote), ,, x(v).

A set U is considered tight if the following relation holds :
2(U) =k-06(U)

Consider the following graph in which an extra vertex s has been added. From each vertex v, z(v) edges
have been drawn to the newly added vertex s. The black edges are the ones already in the graph and the
red edges are those which have been drawn to the new vertex s.

10-1

10-2 Lecture 10: August 26

Figure 10.1:

Now consider the min-cut of this graph. Let the set not including s in the min-cut be U. Now pick a vertex
in U whose z(v) > 0. Decrease the z(v) value until either z(v) becomes 0 or the set U becomes tight. If
the z(v) value had become 0 and the set U still hadn’t become tight pick another vertex with z(v) > 0 and
repeat the above step.

After this step either the set U would have become tight or it would have remained non-tight]| In this case
z(v) values of all vertices in U would be 0 |.

Now pick a vertex with z(v) > 0 and which is not in U. Reduce z(v) until v becomes part of a tight set or
z(v) becomes 0. Now pick another vertex with z(v) > 0 not in the tight sets formed until now and repeat
this step on it.

At the end of the above procedure the following observation can be made :
Every v with x(v) > 0 is part of a tight set.

Lemma 10.2 If A and B are tight, (AUB) and (ANB) are also tight.
Proof:

1. 6(A) +6(B) > §(AUB) + 6(AUB) [proved in earlier classes]

2. z(A) =k-0(A) [A is tight]

3. z(B) =k-6(B) [Bis tight]

4. z(AUB) > k - §(AUB) [We wouldn’t have let the x value come down]

5. ¢(ANB) > k - §(ANB) [We wouldn’t have let the x value come down]

6. z(A) + z(B) = 2(AUB) + z(ANB) [z values are just numbers on vertices.]

Lecture 10: August 26 10-3

7. 2k -6(A)-6(B) > 2k -0(AUB) - §(AUB) [Substituting values in 6 from 4 and 5]

8. 8(A) +8(B) < 6(AUB) + 5(AUB)

This implies that everything is an equality and both AUB and ANB are tight sets and maximal tight sets
are disjoint.

Figure 10.2:

In the above figure the red set has all vertices with z(v)=0 and may not necessarily be tight. However all
other sets are tight.

We started with an arbitrary graph, added another vertex s to it and found the minimum number of edges
which need to be added from each vertex to the vertex s to make the graph GUs k-edge connected. If we
apply Lovasz splitting-off lemma we will get a k-edge connected graph G. So how many edges did we have
to add to make the graph G k-edge connected ? The answer is the following :

[(i (k-6(Vi)))/2]

This is because each of the white sets is tight and after applying Lovasz splitting-off lemma we get the factor
of 2.

Note this is also the minimum number of edges we would need to make the graph k-edge connected if we
look at the partition of disjoint tight sets we just got.

Hence the following equation holds true :

maz([(Y b (k-6(Vi)))/27) = Minimum number of edges needed

10.2 Branchings

The branching problem is to find a minimal cost subset of edges in a graph such that there is a path from
r(root vertez) to every vertex in V. The graph G being considered here is a directed graph.

Just as an example Prim’s Algorithm for minimum spanning trees would fail in the following example:

10-4 Lecture 10: August 26

Ln
)

Figure 10.3:

Prim’s would give answer 9 while correct answer is 8.

10.2.1 Algorithm

1. Take least incoming edge of every vertex except r.

2. We either get the tree or we get cycles.

Figure 10.4:

3. Now we consider all the incoming edges to the cycle. We pick one of these edges and remove the other
edge incoming to that vertex. For eg. In the figure above we could pick 12 and remove 8 (this would
increase our cost by 12-8=4). We pick that edge the addition of which would result in the least rise
in cost. Here the edge with weight 12 is preferred to the edge with weight 10.

10.2.2 Proof of correctness (Linear Programming)

The linear programming formulation for the branching problem is as follows :

10.2.2.1 Primal

1. z.=1 if e is in branching

2. min Y ce ¥z,

Lecture 10: August 26 10-5

3.VSC V-, Zeeém(s)xe >

4. 2, > 0

10.2.2.2 Dual

1. ys is the dual variable corresponding to the set s
2. maz Y ys

3.V € Zs:eeém(s)ys S Ce

Following are the complementary-slackness conditions for the Linear Program :

1. x.=1 only if constraint in the dual on the corresponding edge is tight.

2. Raise y, only if z, for an edge coming into s is 1.
Following are the steps for varying primal-dual variables z., ys keeping the slackness conditions satisfied :

1. For each vertex except r, set the z. value of the least incoming edge to be 1. Simultaneously raise the
ys values of these singleton vertices to the value of the least incoming edge.

2. Now cycles may be formed by the edges with z,=1. Raise the dual variable of the set of vertices in
such a CyCIQ by an amount = minedges[ntoCycle(CedgelIntoCycle =~ Cedge Removed)

3. Set the z, value of the edge just introduced into the branching to be 1.

4. In this way we are following the exact same procedure followed by the algorithm mentioned above.
Also as we are keeping the slackness conditions satisfied we are bound to reach an optimal solution.

