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Abstract

We present a short proof of the Berge—Tutte Formula and the Gallai-Edmonds
Structure Theorem from Hall’s Theorem.

The fundamental theorems on matchings in graphs have been proved in many ways. The
most famous of these results is Hall’s Theorem [6], characterizing when a bipartite graph has
a matching that covers one partite set. Anderson [1] used Hall’s Theorem to prove Tutte’s 1-
Factor Theorem [9], characterizing when a graph has a perfect matching. Berge [2] extended
Tutte’s 1-Factor Theorem to a min-max formula (known as the Berge-Tutte Formula) for
the maximum size of a matching in a general graph.

In fact, Anderson’s approach proves the Berge—Tutte Formula as easily as it proves Tutte’s
1-Factor Theorem. Using the Berge-Tutte Formula, it then also yields the Gallai-Edmonds
Structure Theorem [3, 4, 5], which describes all the maximum matchings in a given graph.
Our proof by this method is shorter than earlier inductive proofs (see Theorem 3.2.1 of
8], for example) by not needing a characterization of factor-critical graphs or a “Stability
Lemma” (Lemma 3.2.2 in [8]). We are indebted to the referee for pointing out the paper by
Kotlov [7], which gives another short proof along similar lines to that given here.

For a set S of vertices in a graph G, let Ng(S) or N(S) denote the set of vertices having
at least one neighbor in S. An X, Y -bigraph is a bipartite graph with partite sets X and Y.
A matching is a set of pairwise non-incident edges. In an X, Y-bigraph, an obvious necessary
condition for a matching that covers X is that |[N(S)| > |S] for all S C X. This is Hall’s
Condition, and Hall’s Theorem [6] states that it is also sufficient.

A 1-factoris a spanning 1-regular subgraph; its edge set is a perfect matching. In a graph
H, let o(H) be the number of odd components (those having an odd number of vertices).
In a graph G, an obvious necessary condition for a 1-factor is that o(G — S) < |S| whenever
S C V(G). This is Tutte’s Condition; Tutte proved that it is also sufficient.

In a graph G, the deficiency def(S) or def(.S) is o(G—S5)—|S|. Covering all vertices in an
odd component of G—.S by a matching in G requires matching one of its vertices with a vertex
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of S. A Tutte set is a vertex subset with positive deficiency. Let def(G) = maxgcy () def(.S).
In an n-vertex graph G, every matching leaves at least n — def(G) vertices uncovered. By
applying Tutte’s Theorem to the graph obtained from G by adding def(G) vertices with no
non-neighbors, Berge observed that the maximum size of a matching is 3(n — def(G)).

Anderson [1] proved Tutte’s Theorem by applying Hall’s Theorem to a bipartite graph
derived from a maximal set of maximum deficiency. We show that the same approach directly
yields the Berge-Tutte Formula. It also yields a short proof of the Gallai-Edmonds Structure
Theorem, which describes all the maximum-sized matchings in a graph G.

The first two lemmas are well known; we include them for completeness.

Lemma 1 (Parity Lemma) If G is an n-vertex graph and S C V(G), then o(G—S)—|S| =n
mod 2. In particular, if S is a Tutte set and n is even, then o(G — S) > |S| + 2.

Proof. Counting vertices shows that o(G — S) + |S| =n mod 2. O

Lemma 2 Let T be a maximal set among the vertex sets of maximum deficiency in a graph
G. If u is a vertex of an odd component C' of G — T, then the graph C — u satisfies Tutte’s
Condition. Also, all components of G —T are odd.

Proof. For S C V(C — u), we have

defc(TUuUS)=0(G—-T—-u—-S)—(|T|+1+]S5])
=oG-T)=1+0(C—-u—-8S)—|T|-1-|9]
= def(T") — 2 + def_,(S)

The choice of T yields defg(T Uu U S) < defg(T). By the Parity Lemma, they have the

same parity. Hence defo_,,(S) < 0. Since S is arbitrary, C' — u satisfies Tutte’s Condition.
If G — T has a component with even order, then adding to T" any leaf of a spanning tree

of that component creates a larger set with the same deficiency as T 0

For T' C V(G), define an auxiliary bipartite graph H(T') by contracting each component
of G — T to a single vertex and deleting edges within 7. With Y denoting the set of
components of G — T, the graph H(T) is a T, Y-bigraph having an edge ty for ¢ € T and
y € Y if and only if ¢ has a neighbor in G in the component of G — T' corresponding to .

Lemma 3 If T is a mazimal set of maximum deficiency in a graph G, then H(T) contains
a matching that covers T



Proof. For S C T, all vertices of Y — Ny(1)(S) are odd components of G — (T'— S). By
the choice of T', we have (|Y| — |[Ng(S)|) — |T' — S| < def(T'). Since def(T) = |Y| — |T],
the inequality simplifies to |S| < |Ng(S)|. Thus Hall’s Condition holds, and H(T') has a
matching that covers T 0

Edges of G corresponding to the matching obtained in Lemma 3 match 7" into vertices of
distinct odd components of G —T'. This enables us to build a matching of size §(n—def(G)).
As noted, Tutte’s 1-Factor Theorem is the special case d = 0.

Theorem 4 (Berge—Tutte Formula; Berge [2]). If G is an n-vertex graph, then the maxi-

mum size of a matching in G is 3(n — def(G)).

Proof. We have noted that 3(n — def(G)) is an upper bound. To build a matching of this
size, we use induction on n. The claim is trivial for n = 0; consider n > 0.

Let T be a maximal set with deficiency def(G). By Lemma 2, all components of G — T
are odd, and C' — u satisfies Tutte’s Condition whenever « is a vertex in an odd component
C of G —T. By the induction hypothesis, C' — u has a perfect matching.

Since G — T has |T'| + def(G) odd components, it thus suffices to cover T using edges to
distinct components of G — T'. Lemma 3 guarantees this. O

In a graph G, let B be the set of vertices covered by every maximum matching in G, and
let D = V(G)— B. Further partition B by letting A be the subset consisting of vertices with
at least one neighbor outside B, and let C = B — A. The Gallai—Edmonds Decomposition
of G is the partition of V(G) into the three sets A, C, D.

A graph G is factor-critical if every subgraph obtained by deleting one vertex has a 1-
factor. A matching in G is near-perfect if it covers all but one vertex of G. For S C V(G),
let G[S] denote the subgraph of G induced by S.

Theorem 5 (Gallai-Edmonds Structure Theorem) Let A,C, D be the sets in the Gallai—
Edmonds Decomposition of a graph G. Let Gy,...,Gy be the components of G[D]. If M is
a mazimum matching in G, then the following properties hold.

a) M covers C' and matches A into distinct components of G[D)].

b) Each G is factor-critical, and M restricts to a near-perfect matching on G;.

c) If @ # S C A, then Ng(S) has a vertex in least |S|+ 1 of Gy,...,G.

d) def(A) = def(G) = k — |A|.

Proof. Let T be a maximal set of deficiency def(G). By the Berge-Tutte Formula, M
leaves def(G) vertices uncovered and matches 7" into vertices of distinct components of G —T
(all are odd), and the rest of M forms a near-perfect matching in each component of G —T.
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We use T to find the sets A, C, D of the Gallai-Edmonds Decomposition. Since H(T)
has a matching covering T (Lemma 3), Hall’s Condition holds: | Ny (S)| > |S| for S C T
Since !N 1) (2 )| = 0, we may let R be a maximal subset of 7" for which equality holds.

The crucial point is that C' = RU R’, where R’ consists of all vertices of all components
of G — T in Ny (R). Since |Ny(r)(R)| = |R|, the edges of M match R into vertices of
distinct components of G[R’]. We have observed that M covers the rest of R'. Since M
covers T and no vertex of R or R’ has a neighbor in the other odd components of G — T, we
conclude that RUR' C C.

Let D' =V(G) =T — R'. 1t suffices to show that D = D" and A =T — R. That is, we
show that every vertex in D’ is omitted by some maximum matching and that every vertex
of T'— R has a neighbor in D'

Let H' = H(T) — (RUNg(r)(R)). For § C T — R with S nonempty, we have |Ny/(S)| >
|S|, since otherwise R could be enlarged to include S. Therefore, deleting any vertex of
Ng/(T—R) from H' leaves a subgraph of H’ satisfying Hall’s Condition, so H' has a maximum
matching omitting any such vertex. By Lemma 2 and Theorem 4, each component of G—T'is
factor-critical, so each vertex in D’ is avoided by some maximum matching. This completes
(a), (b), and (c).

For (d), since o(G[D]) = k, we have def(T') = o(G—T)—|T| = k+|R|—|AU R| = k—|A|.
Since G[C] has a perfect matching, its components have even order, so o(G — A) = k. Hence

A is another set with maximum deficiency. O
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