
A short proof of the Berge–Tutte Formula and the

Gallai–Edmonds Structure Theorem

Douglas B. West∗

Abstract

We present a short proof of the Berge–Tutte Formula and the Gallai–Edmonds

Structure Theorem from Hall’s Theorem.

The fundamental theorems on matchings in graphs have been proved in many ways. The

most famous of these results is Hall’s Theorem [6], characterizing when a bipartite graph has

a matching that covers one partite set. Anderson [1] used Hall’s Theorem to prove Tutte’s 1-

Factor Theorem [9], characterizing when a graph has a perfect matching. Berge [2] extended

Tutte’s 1-Factor Theorem to a min-max formula (known as the Berge–Tutte Formula) for

the maximum size of a matching in a general graph.

In fact, Anderson’s approach proves the Berge–Tutte Formula as easily as it proves Tutte’s

1-Factor Theorem. Using the Berge–Tutte Formula, it then also yields the Gallai–Edmonds

Structure Theorem [3, 4, 5], which describes all the maximum matchings in a given graph.

Our proof by this method is shorter than earlier inductive proofs (see Theorem 3.2.1 of

[8], for example) by not needing a characterization of factor-critical graphs or a “Stability

Lemma” (Lemma 3.2.2 in [8]). We are indebted to the referee for pointing out the paper by

Kotlov [7], which gives another short proof along similar lines to that given here.

For a set S of vertices in a graph G, let NG(S) or N(S) denote the set of vertices having

at least one neighbor in S. An X,Y -bigraph is a bipartite graph with partite sets X and Y .

A matching is a set of pairwise non-incident edges. In an X,Y -bigraph, an obvious necessary

condition for a matching that covers X is that |N(S)| ≥ |S| for all S ⊆ X. This is Hall’s

Condition, and Hall’s Theorem [6] states that it is also sufficient.

A 1-factor is a spanning 1-regular subgraph; its edge set is a perfect matching. In a graph

H, let o(H) be the number of odd components (those having an odd number of vertices).

In a graph G, an obvious necessary condition for a 1-factor is that o(G− S) ≤ |S| whenever

S ⊆ V (G). This is Tutte’s Condition; Tutte proved that it is also sufficient.

In a graph G, the deficiency defG(S) or def(S) is o(G−S)−|S|. Covering all vertices in an

odd component of G−S by a matching in G requires matching one of its vertices with a vertex

∗Department of Mathematics, University of Illinois, Urbana, IL 61801, west@math.uiuc.edu. This research

is partially supported by the National Security Agency under Award No. H98230-10-1-0363.

1



of S. A Tutte set is a vertex subset with positive deficiency. Let def(G) = maxS⊆V (G) def(S).

In an n-vertex graph G, every matching leaves at least n − def(G) vertices uncovered. By

applying Tutte’s Theorem to the graph obtained from G by adding def(G) vertices with no

non-neighbors, Berge observed that the maximum size of a matching is 1
2
(n − def(G)).

Anderson [1] proved Tutte’s Theorem by applying Hall’s Theorem to a bipartite graph

derived from a maximal set of maximum deficiency. We show that the same approach directly

yields the Berge–Tutte Formula. It also yields a short proof of the Gallai–Edmonds Structure

Theorem, which describes all the maximum-sized matchings in a graph G.

The first two lemmas are well known; we include them for completeness.

Lemma 1 (Parity Lemma) If G is an n-vertex graph and S ⊆ V (G), then o(G−S)−|S| ≡ n

mod 2. In particular, if S is a Tutte set and n is even, then o(G − S) ≥ |S| + 2.

Proof. Counting vertices shows that o(G − S) + |S| ≡ n mod 2. ¤

Lemma 2 Let T be a maximal set among the vertex sets of maximum deficiency in a graph

G. If u is a vertex of an odd component C of G − T , then the graph C − u satisfies Tutte’s

Condition. Also, all components of G − T are odd.

Proof. For S ⊆ V (C − u), we have

defG(T ∪ u ∪ S) = o(G − T − u − S) − (|T | + 1 + |S|)

= o(G − T ) − 1 + o(C − u − S) − |T | − 1 − |S|

= defG(T ) − 2 + defC−u(S)

The choice of T yields defG(T ∪ u ∪ S) < defG(T ). By the Parity Lemma, they have the

same parity. Hence defC−u(S) ≤ 0. Since S is arbitrary, C − u satisfies Tutte’s Condition.

If G− T has a component with even order, then adding to T any leaf of a spanning tree

of that component creates a larger set with the same deficiency as T . ¤

For T ⊆ V (G), define an auxiliary bipartite graph H(T ) by contracting each component

of G − T to a single vertex and deleting edges within T . With Y denoting the set of

components of G − T , the graph H(T ) is a T, Y -bigraph having an edge ty for t ∈ T and

y ∈ Y if and only if t has a neighbor in G in the component of G − T corresponding to y.

Lemma 3 If T is a maximal set of maximum deficiency in a graph G, then H(T ) contains

a matching that covers T .
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Proof. For S ⊆ T , all vertices of Y − NH(T )(S) are odd components of G − (T − S). By

the choice of T , we have (|Y | − |NH(S)|) − |T − S| ≤ def(T ). Since def(T ) = |Y | − |T |,

the inequality simplifies to |S| ≤ |NH(S)|. Thus Hall’s Condition holds, and H(T ) has a

matching that covers T . ¤

Edges of G corresponding to the matching obtained in Lemma 3 match T into vertices of

distinct odd components of G−T . This enables us to build a matching of size 1
2
(n−def(G)).

As noted, Tutte’s 1-Factor Theorem is the special case d = 0.

Theorem 4 (Berge–Tutte Formula; Berge [2]). If G is an n-vertex graph, then the maxi-

mum size of a matching in G is 1
2
(n − def(G)).

Proof. We have noted that 1
2
(n− def(G)) is an upper bound. To build a matching of this

size, we use induction on n. The claim is trivial for n = 0; consider n > 0.

Let T be a maximal set with deficiency def(G). By Lemma 2, all components of G − T

are odd, and C − u satisfies Tutte’s Condition whenever u is a vertex in an odd component

C of G − T . By the induction hypothesis, C − u has a perfect matching.

Since G− T has |T |+ def(G) odd components, it thus suffices to cover T using edges to

distinct components of G − T . Lemma 3 guarantees this. ¤

In a graph G, let B be the set of vertices covered by every maximum matching in G, and

let D = V (G)−B. Further partition B by letting A be the subset consisting of vertices with

at least one neighbor outside B, and let C = B − A. The Gallai–Edmonds Decomposition

of G is the partition of V (G) into the three sets A,C,D.

A graph G is factor-critical if every subgraph obtained by deleting one vertex has a 1-

factor. A matching in G is near-perfect if it covers all but one vertex of G. For S ⊆ V (G),

let G[S] denote the subgraph of G induced by S.

Theorem 5 (Gallai–Edmonds Structure Theorem) Let A,C,D be the sets in the Gallai–

Edmonds Decomposition of a graph G. Let G1, . . . , Gk be the components of G[D]. If M is

a maximum matching in G, then the following properties hold.

a) M covers C and matches A into distinct components of G[D].

b) Each Gi is factor-critical, and M restricts to a near-perfect matching on Gi.

c) If ∅ 6= S ⊆ A, then NG(S) has a vertex in least |S| + 1 of G1, . . . , Gk.

d) def(A) = def(G) = k − |A|.

Proof. Let T be a maximal set of deficiency def(G). By the Berge–Tutte Formula, M

leaves def(G) vertices uncovered and matches T into vertices of distinct components of G−T

(all are odd), and the rest of M forms a near-perfect matching in each component of G− T .
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We use T to find the sets A,C,D of the Gallai–Edmonds Decomposition. Since H(T )

has a matching covering T (Lemma 3), Hall’s Condition holds:
∣

∣NH(T )(S)
∣

∣ ≥ |S| for S ⊆ T .

Since
∣

∣NH(T )(∅)
∣

∣ = 0, we may let R be a maximal subset of T for which equality holds.

The crucial point is that C = R ∪ R′, where R′ consists of all vertices of all components

of G − T in NH(T )(R). Since
∣

∣NH(T )(R)
∣

∣ = |R|, the edges of M match R into vertices of

distinct components of G[R′]. We have observed that M covers the rest of R′. Since M

covers T and no vertex of R or R′ has a neighbor in the other odd components of G−T , we

conclude that R ∪ R′ ⊆ C.

Let D′ = V (G) − T − R′. It suffices to show that D = D′ and A = T − R. That is, we

show that every vertex in D′ is omitted by some maximum matching and that every vertex

of T − R has a neighbor in D′.

Let H ′ = H(T )− (R∪NH(T )(R)). For S ⊆ T −R with S nonempty, we have |NH′(S)| >

|S|, since otherwise R could be enlarged to include S. Therefore, deleting any vertex of

NH′(T−R) from H ′ leaves a subgraph of H ′ satisfying Hall’s Condition, so H ′ has a maximum

matching omitting any such vertex. By Lemma 2 and Theorem 4, each component of G−T is

factor-critical, so each vertex in D′ is avoided by some maximum matching. This completes

(a), (b), and (c).

For (d), since o(G[D]) = k, we have def(T ) = o(G−T )−|T | = k+|R|−|A ∪ R| = k−|A|.

Since G[C] has a perfect matching, its components have even order, so o(G−A) = k. Hence

A is another set with maximum deficiency. ¤
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