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5.1 Threshold for connectedness in Random Graphs

Theorem 5.1 Let α = α(n) be a function with α(n) → ∞ as n → ∞. Then S(n) := ln(n)−α(n)
n is a lower

threshold function and t(n) := ln(n)+α(n)
n is an upper threshold function for connectivity of G(n,p).

Proof:

1. Lower Threshold Function: If p ≤ s then by Theorem 4.3 G(n,p) has isolated vertices approximately
almost surely. Therefore, G(n,p) graph are not connected.

2. Upper Threshold Function: We assume α(n) ≤ ln(n) for all n. For each k ≤ n, let Xk be the random
variable which counts the number of connected components of size k.

Let Y =
∑
k≤n

Xk and let X :=
∑
k≤bn2 c

Xk. Note here Y counts all the connected components in G(n,p) whereas

X counts all the connected components of size at most bn2 c.
We thus have Y ≥ 1 implies X ≥ 1 because there is some smaller connected component inside the bigger
component.

Therefore( Using Markov inequality ), P (Y ≥ 1) ≤ P (X ≥ 1) ≤ E(X)
1 = E(X)

Claim 5.2 E(X)→ 0 as n→∞

Proof: Consider S ⊆ V ,
P(S forms a maximal connected component in G(n,p)) ≤ P(no vertex in S is connected to Sc)
P(no vertex in S is connected to Sc) = (1− p)|S|(n−|S|) ≤ e−p|S|(n−|S|) ≤ e−t|S|(n−|S|)
Note the last inquality holds if p ≥ t (and we can this Equation 1).
Now we are going to analyze the expectation of each Xk∀k ≤ bn2 c

E(Xk) ≤ e−tk(n−k)
(
n

k

)
Now we need to give a good estimation of the Binomial Coefficient. Using Stirling’s formula :

E(Xk) ≤
(ne
k

)k
e−tk(n−k)
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Next inserting the formula for t we obtain :

E(Xk) ≤ e−α(n)
(
e1−(1−

1
n )α(n) + k

n (ln(n) + α(n))

k

)k
= e−α(n)(Bk)k

We can the above Equation 2 and now turn our attention to Bk.
Case 1: When k ≤ bn 3

4 c then :

k

n
(ln(n) + α(n)) ≤ 1

n
1
4

(ln(n) + α(n)) ≤ 2 ln(n)

n
1
4

→ 0

The last approximation can be realized using the Taylor Series expansion. Henceforth, the numerator in (2)
is at most a constant say c ¿ 0. If c ¡ k, then with θ = c

c+1 we have Bk ≤ c
k ≤ θ < 1 for any k ≥ c+ 1.

So,
∑bn 3

4 c
k=c+1(Bk)k ≤

∑bn 3
4 c

k=c+1 θ
k ≤ c1 for some constant c1 > 0

Case 2: When bn 3
4 c ≤ k ≤ bn2 c then:

Bk ≤ e1−
1
4 ln(n)−( 1

2−
1
k )α(n)

Since k ≥ 2, 1
2 −

1
k ≥ 0 so the exponent tends to infinity. So Bk ≤ θ for some θ < 1

Therefore,
∑n

2

k=bn
3
4 c

(Bk)k < c2 for some constant c2 > 0.

Thus E(X) =
∑n

2

k=1E(Xk) ≤ e−α(n)(c1 + c2 + c3)→ 0 as n→∞.


