
COL758: Advanced Algorithms Spring 2019

Lecture 6: January 17
Lecturer: Naveen Garg Scribe: Paras Gupta

Note: LATEX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

6.1 Multiplicative Update Method

The Multiplicative Update Method is motivated by the Expert Advice Method as seen in previous lectures
and In this lecture we are going to solve the linear programming using the Multiplicative Update Method.

We saw the linear programming problem:

max cTx

s.t. Ax ≤ b
x ≥ 0

where c, x ∈ Rn, b ∈ Rm and A ∈ Rm×n.

Now What we will do, we will solve the problem in which that all the elements in the matrix A, b, c are
positive.

aij ≥ 0

bi ≥ 0

cj ≥ 0

It is known as the Packing Linear Problem

6.2 Packing Linear Problem as the Max Flow Problem

Given a graph G = (V,E) with edge capacities ce : E → R+ and a source s and a sink t, the max flow
problem is given by:

max
∑
i:Pi∈¶

fi

s.t. ∀e ∈ E
∑
i:e∈Pi

fi ≤ ce

∀i : Pi ∈ P fi ≥ 0

6-1



Lecture 6: January 17 6-2

The problem can be modelled as:

where aij ∈ {0, 1} All paths j containing the edge i have aij = 1 as otherwise it is aij = 0.
X is the matrix for flow through the path and B is the capacity matrix.

But in the packing problem, there can be arbitrary value of aij .

6.3 Formulation of the problem

Now suppose, we have the following systme:

max cTx

s.t. Ax ≤ b
x ≥ 0

But we have reduced our constraint to just single constraint. So, our problem will become:

max
∑
j

cjxj

s.t.
∑
j

a1jxj ≤ b1

∀xj ≥ 0

The solution for the above problem will be given by the: Pick the j which maximizes
cj
a1j

The above solution is intuitive and can be think of the solution of the knapsack problem which is
equivalent to the above set of constraints.

Now, suppose we add one more constraint and have the equivalent version of the 2D Knapsack problem
such that:

max
∑
j

cjxj

s.t.
∑
j

a1jxj ≤ b1∑
j

a2jxj ≤ b2

∀xj ≥ 0



Lecture 6: January 17 6-3

Now, as in the previous problem, we can say that its solution will be a linear combination and we have to
pick the j which maximizes

cj
a1jy1+a2jy2

where y1 + y2 = 1, 0 ≤ y1 ≤ 1 0 ≤ y2 ≤ 1

This is similar to picking shortest path. We have le with each path, we took linear combination and after
that selected shortest among them. If we take the linear combination of rows and multiplying them by
length and then column 1 will be the length of path 1, column 2 will be the length of path 2 and so on. So
each column in that will give us the length of the respective path.

Suppose, If we have different profits on different paths and we have different length of paths. As in the
previous algorithm, we changed the length of the edges to handle the congestion. # of paths using the edge
reached near to the capacity thus giving us the optimum.

Thus the final model that we will be working with will be:

max
∑
j

cjxj

s.t. (
∑
j

a1jxj ≤ b1) l1

(
∑
j

a2jxj ≤ b2) l2

(
∑
j

a3jxj ≤ b3) l3

.

.

.

(
∑
j

am−1jxj ≤ bm−1) lm−1

(
∑
j

amjxj ≤ bm) lm

∀xj ≥ 0



Lecture 6: January 17 6-4

6.4 Algorithm

1. Assign a length li with every column. Initialize li as : l0i = δ
bi

where δ is an input parameter. Also set
x∗j= 0.

2. Repeat :

(a) At each step we pick column j∗ which maximizes ci
m∑
i=1

aij li

(b) Define λ = min
i

bi
aij∗

(c) Updation step:-
∀ 1 ≤ j ≤ n xj∗ = xj∗ + λ

∀ 1 ≤ i ≤ m lti = lt−1i .(1 + ε
λaij∗

bi
)

until Dt = 1 where Dt =
∑
i

ltibi

Analysis

For every iteration t ≥ 1, the value of objective of dual which is Dt is:

Dt =
∑
i

ltibi

Substituting lti from the updation step we get,

Dt = Dt−1 +
∑
i

lt−1i (ε
λtaij∗

bi
)bi

= Dt−1 + ελt
∑
i

lt−1i aij∗ (1)

= Dt−1 + ελtDt−1 c
t
j∗

β
(2)

Equation (2) is achieved by the use of dual problem:

Dual Problem is given by:

min
∑
m

bili

s.t.
∑
m

aij li ≥ cj

∀ li ≥ 0

If li is not feasible, we can get a feasible solution by scaling.

So, we will find the j∗ which maximizes
cj∑
m aij li

that is which constraint is violated the most.

This will give us the feasible dual solution and since β is the minimum we get:∑
m

bili
cj∗∑
m aij∗ li

≥ β (3)



Lecture 6: January 17 6-5

Therefore,

Dt = Dt−1(1 + ελt
ctj∗

β
)

≤ Dt−1eε
λt−1ct

j∗
β (Since 1 + x ≤ ex)

Now let us say that after T iterations DT = 1, then after T iterations,

DT ≤ D0e
ε
β

T∑
i=1

λicij∗
(recursively)

Observe that
T∑
i=1

λicj∗ is the primal objective value that is equal to
n∑
j=1

xjcj in T iterations because λi is

the value that we added in x∗j in ith iteration. Let this be denoted by P . Therefore by replacing the sum
by P we get,

DT ≤ D0e
εP
β

Further by shifting terms and taking log both sides we get,

DT

D0
≤ e

εP
β

=⇒ εP

β
≥ ln

DT

D0

Note that D0 = mδ where m is the number of constraints and DT = 1 because of our stopping criterion.
Therefore,

P

β
≥ 1

ε
ln

1

mδ
(3)

Claim: There is a feasible primal solution of value P
1
ε ln 1

δ

Proof: Consider a constraint i. For every bi units increase in the LHS of the ith constraint the

corresponding dual variable li is increased by a factor of at least 1 + ε. Let us assume that fi =
n∑
j=1

aijxj be

the LHS of the ith constraint. Therefore li increases by a factor of at least (1 + ε)
fi
bi

Note that l0i = δ
bi

and lTi ≤ 1 since DT = 1 =
∑
i

lTi bi. Therefore,

(1 + ε)
fi
bi ≤ 1

δ

Further solving and taking log we get,
fi
bi
≤

ln 1
δ

ln (1 + ε)

From Taylor series expansion we can say that ln (1 + ε) ≈ ε for small values of ε. Therefore we get,

fi
bi
≤ 1

ε
ln

1

δ

Therefore every constraint is atmost violated by a factor 1
ε ln 1

δ . Therefore scaling P by this quantity gives
us the feasible primal solution of the packing LPP.

Value of primal therefore becomes = P
1
ε ln 1

δ



Lecture 6: January 17 6-6

We want the primal solution to be close to the dual solution β. Therefore we want,

β

P

1

ε
ln

1

δ
≤

1
ε ln 1

δ
1
ε ln 1

mδ

≤ 1 + γ

=⇒ 1

δ
≤ (

1

mδ
)1+γ =

1

mδ
(

1

mδ
)γ

=⇒ (δ)γ ≤ 1

m1+γ

=⇒ δ ≤ 1

m1+ 1
γ

We can thus choose δ accordingly. Observe the trade-off. We cannot choose small δ as then it will take
more iterations to converge to the solution and we can also not choose δ large as we also got an upper
bound on δ.


