
COL758: Advanced Algorithms Spring 2019

Lecture 2: January 7
Lecturer: Naveen Garg Scribe: Praneeth Kacham

Note: LATEX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

They may be distributed outside this class only with the permission of the Instructor.

2.1 Linear Programming

In last class, we have seen what a linear program is and a few techniques to solve a linear program. Following
is the canonical form of a linear program we are going to use throughout the course.

max cTx

s.t. Ax ≤ b
x ≥ 0

where c, x ∈ Rn, b ∈ Rm and A ∈ Rm×n.
Following are few techniques to solve linear programs.

1. Simplex Method - Exponential time

2. Ellipsoid Algorithm - Polynomial time

3. Interior Point Algorithms - Polynomial time

2.2 Flows

Notation

δin(v) = {e = (x, v)|e ∈ E} : all arcs coming into vertex v

δout(v) = {e = (v, x)|e ∈ E} : all arcs going out of vertex v

Definition of flow

Given a directed graph G = (V,E), a capacity function c : E → R+, source vertex s ∈ V and destination
vertex t ∈ V , a function f : E → R+ is called a flow if it satisfies the following conditions

1. Capacity Constraint : ∀e ∈ E : f(e) ≤ c(e)

2. Flow Conservation : ∀v 6= s, t ∈ V :
∑
e∈δin(v) f(e) =

∑
e∈δout(v)

f(e)

Example of a valid flow

Red denotes the capacity of an edge and Blue denotes the flow on an edge.

2-1

Lecture 2: January 7 2-2

u

s

v

t

7,7

5,2

10,9

8,8 10,10

Flow Maximization

Given a graph G = (V,E), capacities c and vertices s, t, a flow f is maximum flow if the net flow from s to
t is maximum among all the flows. Net flow from s to t in a flow f is given by∑

e∈δout(s)

f(e)−
∑

e∈δin(s)

f(e)

Definition of s− t cut

Partition of the vertex set V is called a cut. A partition of vertex set V into (X,Y) such that s ∈ X and
t ∈ Y is called an s− t cut.

Capacity of a cut

Capacity of an s− t cut is defined as follows

capacity of s− t cut (X,Y) =
∑

e=(u,v):
u∈X,v∈Y

c(e)

It is easy to observe that
Max flow ≤ Min cut

We will prove later that
Max flow = Min cut

Max flow problem as a linear program

We shall see how to model max-flow problem as a linear program. For every edge we have a variable xe
which denotes the flow on the edge e. Capacity constraints enforce the following constraint on xe

∀e ∈ E xe ≤ ce

Flow conservation condition introduces the following constraints

∀v 6= s, t ∈ V
∑

e∈δin(v)

xe =
∑

e∈δout(v)

xe

Non-negativity of the flow implies
∀e ∈ E xe ≥ 0

Net flow from s to t is given by ∑
e∈δout(s)

xe −
∑

e∈δin(s)

xe

Lecture 2: January 7 2-3

Thus, maximum flow problem can be encoded by the following linear program

max
∑

e∈δout(s)

xe −
∑

e∈δin(s)

xe

s.t. xe ≤ ce ∀e ∈ E∑
e∈δin(v)

xe =
∑

e∈δout(v)

xe ∀v 6= s, t ∈ V

xe ≥ 0 ∀e ∈ E

Note

It can be seen that max-flow of a graph removing all the arcs coming into the vertex s is equal to max-flow
of the original graph.

Path decomposition of flow

Another way to look at a flow is considering paths from s to t and sending some amount of flow through
each path. This automatically takes care of flow-conservation constraint. Let P be the set of all s-t paths.
Capacity constraint can be given as follows:

∀e ∈ E
∑

P∈P:e∈P
f(P) ≤ ce

Decomposing a given flow f into flow along paths

Result: paths : Flow f decomposed into paths
paths← φ;
while There is a path from s to t without zero-flow edges according to f do

p ← any path from s-t without zero-flow edges according to f ;
fp = mine∈p fe;
∀e ∈ p fe ← fe − fp;
paths← paths ∪ (p, fp);

end
Algorithm 1: Path decomposition of flow

For any valid flow, the above algorithm terminates in at most |E| steps and at the end of the algorithm,
fe is zero for each edge. The latter statement can be proved using the flow-conservation constraint. Thus,
any valid flow can be decomposed into flow along at most |E| paths.

Max flow LP in terms of paths

max.
∑
P∈P

fP∑
P∈P:e∈P

fP ≤ ce ∀e ∈ E

fP ≥ 0

Note that this formulation may have exponential number of variables but this formulation is useful when
proving Max-Cut=Min-Flow and multi-commodity flow problem.

Lecture 2: January 7 2-4

2.3 Dual of a linear program

Motivation

Consider the following linear program

max. 4x1 + x2 + 5x3 + 3x4

x1 − x2 − x3 + 3x4 ≤ 1

5x1 + x2 + 3x3 + 8x4 ≤ 55

− x1 + 2x2 + 3x3 − 5x4 ≤ 3

x1, x2, x3, x4 ≥ 0

Consider the following method of finding an upper bound on the optimum. Any feasible solution must satisfy
all the constraints. Adding the 2nd and 3rd constraints, we obtain 4x1 + 3x2 + 6x3 + 3x4 ≤ 58. Each of the
coefficients of xi in this constraint is greater than the coefficient of xi in the objective. From non-negativity
of x′is, we obtain

4x1 + x2 + 5x3 + 3x4 ≤ 4x1 + 3x2 + 6x3 + 3x4 ≤ 58

The above holds for any feasible solution. Hence, 58 is an upper bound on the optimum.
How do we obtain the best upper-bound using the linear combinations of constraints? Let ith constraint

be multiplied by λi ≥ 0 and add all of them. We obtain

λ1(x1 − x2 − x3 + 3x4) + λ2(5x1 + x2 + 3x3 + 8x4) + λ3(−x1 + 2x2 + 3x3 − 5x4) ≤ λ1 + 55λ2 + 3λ3

Collecting coeffecients of each xi,

(λ1 + 5λ2 − λ3)x1 + (−λ1 + λ2 + 2λ3)x2 + (−λ1 + 3λ2 + 3λ3)x3 + (3λ1 + 8λ2 − 5λ3)x4 ≤ λ1 + 55λ2 + 3λ3

A sufficient condition for λ1 + 55λ2 + 3λ3 to be an upperbound to optimum is that coefficient of each of the
x′is is greater than the corresponding coefficient in the objective. Obtaining the best upperbound in this
method can be encoded as a minimization problem as follows

min. λ1 + 55λ2 + 3λ3

λ1 + 5λ2 − λ3 ≥ 4

− λ1 + λ2 + 2λ3 ≥ 1

− λ1 + 3λ2 + 3λ3 ≥ 5

3λ1 + 8λ2 − 5λ3 ≥ 3

λ1, λ2, λ3 ≥ 0

Any feasible solution for this linear program gives an upper bound on the optimum and optimum of this
linear program is the best upper bound that can be obtained based on using the linear combinations of
constraints. This optimization problem is called dual problem and the original optimization problem is
called primal problem.

Dual problem of the canonical LP

Using the previous ideas, let us write out the dual program of the linear optimization problem in canonical
form.

max cTx

s.t. Ax ≤ b
x ≥ 0

Let the vector of multipliers be given by λ ∈ Rm(One for each constraint). Dual program of this is as follows.

min bTλ

s.t. ATλ ≥ c
λ ≥ 0

Lecture 2: January 7 2-5

Weak duality Theorem

Let x be any feasible solution for the primal and λ be any feasible solution for dual then

cTx ≤ bT y

and hence
OPT (Primal) ≤ OPT (Dual)

This can be seen easily from the way we have defined dual of a linear program.

Strong duality Theorem

Strong duality theorem states that

OPT (Primal) = OPT (Dual)

and there exists primal optimal solution x∗ and dual optimal solution λ∗ such that

cTx∗ = bTλ∗

Complementary Slackness

Consider the following terms for primal feasible x and dual feasible λ,

cTx λTAx λT b

For any feasible x for the primal problem, we have

Ax ≤ b

Now, λ being a non-negative vector, we have

λTAx ≤ λT b

For any feasible λ for dual problem, we have
ATλ ≥ c

Now, x being a non-negative vector(Since, primal feasible), we have

xTATλ ≥ xT c

same as
λTAx ≥ cTx

Thus, for any x which is primal feasible and λ which is dual feasible, we have

cTx ≤ λTAx ≤ bTλ

This a proof of weak-duality theorem. The above is also valid for x∗ and λ∗. Hence,

cTx∗ ≤ λ∗TAx∗ ≤ bTλ∗

But, strong duality states that cTx∗ = bTλ∗. Hence,

cTx∗ = λ∗TAx∗ = bTλ∗

Consider the equality cTx∗ = λ∗TAx∗. This implies, (cT −λ∗TA)x∗ = 0. Now, from dual feasibility, c−ATλ∗
is a non-negative vector and from primal feasibility, x∗ is a non-negative vector. Dot product being 0 implies
that for each i, either ith component of (c−ATλ∗) is 0 or ith component of x∗ is 0 i.e., either ATi λ

∗ = ci or
x∗i = 0. Similarly, either λ∗i = 0 or ATi x

∗ = bi.
We can group the constraints of primal problem and dual problem as follows.

xi ≥ 0 & constraint corresponding to xi in dual

λi ≥ 0 & constraint in primal problem of which λi is the multiplier

For optimal primal and dual solutions atmost one of the inequalities in each of the pairs as defined above
can have slack (i.e., not tight). Hence, this property is called complementary slackness.

