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A Combinatorial Algorithm for Computing a Maximum Independent 
Set in a t-perfect Graph 

Friedrich Eisenbrand * Stefan Funke * t Naveen Garg ~ Jochen Ktnemann § 

Abstract 

We present a combinatorial polynomial time algorithm to 
compute a maximum stable set of  a t-perfect graph. The 
algorithm rests on an e-approximation algorithm for general 
set covering and packing problems and is combinatorial in 
the sense that it does not use an explicit linear programming 
algorithm or methods from linear algebra or convex geom- 
etry. Instead our algorithm is based on basic arithmetic op- 
erations and comparisons of rational numbers which are of 
polynomial binary encoding size in the input. 

1 Introduction 

A stable or independent set S C_ V of an undirected 
graph G = (VIE) is a subset of the nodes of G which are 
pairwise nonadjacent. The stable set problem is the problem 
of finding a stable set of a graph G with maximum cardinality 
and is NP-hard [5]. 

The stable set problem can be formulated as an integer 
program with the following linear programming relaxation: 

(1.1) max Z Yv 
vEV 

{ u , v } t E :  Yu+yv _<1 

u t V :  Yu >0. 

This linear programming relaxation (1.1) has fractional 
vertex solutions. An odd cycle of G is a multiset C = 
{v t , . . . ,  Vk } of nodes such that k < IVI is odd and {Vi, Vi-t.l } 6 
E for all i = 1,.. .  , k -  1 and {vk,vt} 6 E 1. I f C  is an odd 
cycle, then each characteristic vector of a stable set of G 
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I If C is just a set, we have a simple cycle; but here we are also allowing 
non-simple cycles. 

satisfies the odd cycle inequality 

(1.2) ~ Yv _< [IcI/2J- 
vtC 

For a graph G we denote the polytope defined by the inequal- 
ities (1.1) and all odd cycle inequalities (1.2) by Podd(G). 

A graph G is t-perfect, if its odd cycle polytope Pond is 
a 0/1 polytope. The study of these graphs was suggested by 
Chwital [2]. The odd cycle inequalities can be separated in 
polynomial time [6], i.e., one can decide in polynomial time 
whether one of the inequalities (1.2) violates a given point 
x* and if so, find such an inequality. From the equivalence 
of separation and optimization [10, 12, 8] it follows that 
the ellipsoid method [11] can be used to optimize a linear 
function over Pad(G) in polynomial time and consequently 
solve the weighted stable set problem for t-perfect graphs 
in polynomial time. However, the ellipsoid method relies 
heavily on division, rounding and approximation. This is 
due to the fact that, conceptually, one even leaves the field of 
rationals and needs to compute square roots. This introduces 
the issue of necessary accuracy such that the algorithm is 
guaranteed to run in polynomial time and to produce correct 
results in the bit-model. 

1.1 Main results. We provide the first combinatorial al- 
gorithm for computing a maximum stable set in a t-perfect 
graph. This we achieve by considering the dual of the lin- 
ear programming relaxation of the integer program for the 
maximum stable set in t-perfect graphs. The dual, which is a 
covering problem, can be solved to within a (1 + o 0 approx- 
imation using a combinatorial algorithm for approximating 
fractional set cover. For a suitable choice of ~ this leads to 
a procedure for computing the size of a maximum stable set 
in a t-perfect graph which is then used to construct the actual 
stable set. 

We believe that such an approach could be applied to 
other combinatorial optimization problems for which the 
only algorithms known are based on the ellipsoid method. 
Further, while our algorithm for maximum stable set in t- 
perfect graphs does not significantly outperform the algo- 
rithm based on the elfipsoid method, it does provide a com- 
binatorial approach to this problem, which we believe can be 
fine-tuned to obtain a much faster algorithm. 
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1.2 Related work. Combinatorial algorithms for the stable 
set problem of t-perfect graphs are not known and a non- 
polyhedral characterization of the class of t-perfect graphs 
has, so far, not been provided. However some subclasses of 
t-perfect graphs have been identified which can be charac- 
terized and recognized in polynomial time. These include 
bipartite graphs, almost bipartite graphs [4], series parallel 
graphs [1, 2], graphs that do not contain an odd K4 [6] and 
graphs that do not contain a so called badK4 [7]. Combinato- 
rial algorithms for the stable set problem have been provided 
for bipartite graphs, almost bipartite graphs [4] and series 
parallel graphs [ 1, 2]. 

The search for combinatorial algorithms for polynomial 
problems for which only ellipsoidal algorithms are known 
has stimulated a lot of research in the field of combinatorial 
optimization. Recent breakthroughs include the combinato- 
rial algorithms for submodular function minimization [14, 9] 
and the combinatorial algorithm for path-matching prob- 
lems [15]. 

The combinatorial algorithm for approximating frac- 
tional set cover is an unpublished result of Garg and Ktne-  
mann; both the algorithm and its analysis are a straight- 
forward extension of the greedy algorithm for integral set 
cover [3]. Similar such algorithms have been obtained by 
Plotkin, Shmoys and Tardos [13] using Lagrange relaxations 
and by Young [17, 18] using the technique of oblivious 
rounding. 

2 A (1 + ~)-approximation algorithm for the fractional 
set cover problem 

The minimum weight set cover problem is defined as fol- 
lows. Given a universe U = {el , . . .  ,en} of n elements, a 
(potentially exponential-size) collection ,5 = {S1,$2, ...,Sk} 
of subsets of U and a cost function c : ,5 --+ Q+, find a subset 
of,5 of minimum cost which covers all the elements in U. 

The problem can be formulated as an integer linear 
program with the following linear programming relaxation: 

(2.3) rain ~ csxs 
SES 

e E U :  ~ xs >1,  
S:eES 

S E,5 : xs >_0. 

In this section we will present a combinatorial (1 + ~x)- 
approximation algorithm for the linear programming relax- 
ation of the set cover problem. 

We will first review the well-known greedy algorithm 
which computes an integral set cover with cost at most 
O(logn) times the optimum, see, e.g. [16, p. 108]. For this 
we consider the dual of the set cover linear program (2.3): 

(2.4) max ~ Y e  
eEU 

S E ,5 : X Ye < cs 
eES 

e E U :  Ye > 0 .  

In each round, the greedy algorithm picks a subset 
S E ,5 which minimizes the ratio Ps = cs/(~eesre), where 
re denotes the 'requirement' of element e, i.e. we have 
re = 1 if it is not covered by any set which we have picked 
so far, re = 0 otherwise. In the following we assume that 
we can find such a subset S E ,5 with minimum Ps value in 
polynomial time. 

We set re = 0 for the newly covered elements e E U in 
this round and proceed until all e E U are covered. How can 
we bound the '  quality' of this solution? 

Consider the dual of the set cover linear program (2.4). 
In each round, when picking a set S (and therefore setting 
re = 0 for all e E S which were not covered before), we set 
each dual variable Ye of the newly covered elements of this 
round to Ye := Ps" re.(Here, of course, we have re = 1, but we 
will later change the algorithm such that values r e ~ {0,1 } 
might occur.) 

Clearly, in any stage of this algorithm we have 
~s~sXscs = ~eEuYe, but only the primal solution is feasi- 
ble at the end. How 'infeasible' can the dual solution be? 
Consider the constraint for one particular S E ,5 in the dual 

£ Y e  _< cs, 
eES 

and let e l , . . .  ,era be an ordering of the elements of S in 
increasing order of the rounds in which the elements were 
covered. We claim that Yei _< cs/(m - i + 1). Assume that S' 
is the set that first covers ei. As S ~ is chosen in such a way 
that the average cost of the newly covered elements in S ~ is 
minimum, this average cost must be less than the average 
cost of the elements which would be newly covered by S. 
At this point in time, there are at least m - i + 1 uncovered 
elements of S and therefore Ye _< cs/(m - i + 1). Hence we 
have 

h=m 
~ Y e  < cs" ~ l / h  < c s . l n ( n +  l). 
eES h=l 

So each dual constraint is violated by at most a factor of 
ln(n + 1). Hence, scaling the dual variables by 1/ln(n + 1) 
yields a feasible dual solution which has objective value at 
least 1/ln(n + 1) times the value of the primal (feasible) 
solution. 

PROPOSITION 2.1. The greedy algorithm computes a set 
cover which has size at most Inn times the size of  the optimal 
set cover. 
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How can we modify the algorithm to obtain primal and 
dual solutions which are at most (1 + t~) away from each 
other? The crucial idea is not to select a set S 'entirely', 
i.e. setting xs = 1, but just adding some small value e to xs, 
thereby obtaining a greedy algorithm with finer granularity. 
The choice of 8 will depend on the quality of the approxima- 
tion we wish to achieve. 

So again, in each round we 'pick'  the set S which 
minimizes the cost-to-requirement ratio 

p s = c s / X r e  
eES 

and update the primal variables 

xS = xs  + 8, 

as well as the dual variables 

y e = Y e + P S ' r e . e / ( l + e ) ,  e E S. 

Furthermore we decrease the requirements 

re = r e / ( l + e ) ,  e E S .  

Notice here that the decrease Are of the requirement of e E S 
is not 8, as in the simple greedy algorithm for set covering. 
Instead, the decrease is Are = re" e/(1 + e). The dual variable 
Ye is basically increased by psA~. If  at some point the 
requirement re falls below some threshold 5 (which we chose 
later on), we set it to zero. 

LEMMA2.1. At any time throughout the algorithm 
Zses csxs = (1 + e) Ee~u Ye holds. 

Proof In each round, if the primal objective function is in- 
creased by cs .e ,  the dual objective function value is in- 
creased by EecS ps're" £/(1 + e) and since Ps = cs/(EeeS re), 
the dual increase is cs. e / ( l  + e). 

When the algorithm terminates, we have for each e E U, 
~S:eESXS > 8- k, where k is the smallest number such that 
(1 + 8) -k < 5. Scaling primal variables by 1](e. k) will 
therefore ensure a primal feasible solution• 

Let us now argue how far the dual solution is from 
feasibility. 

LEMMA 2.2. For any set S E ,5, we have ~e~SYe _< 
cs ln((1 + e)-n/~) .  

Proof Consider the sum of the requirements ~eES re of S. 
This quantity is IS I at the beginning and at least ~ in the 'last' 
round where some element of S is covered. Consider a round 
where some set S I has minimum ratio Ps' and where the 
requirements of S are changed, i.e., there exists an element 
e E S n S' with re > 0 .  

If  the sum of the requirements is decreased by some 
amount 13 = ~eeSnS' re" (e/(1 + 8)), then EeeSYe increases 
by Ps"  I~ which is at most Ps" ~. 

Now consider the ratio Ps = cs/~e~S re as a function of 
the requirement ~e~S re of the elements in S. It is easy to 
see that the sum of all increments of ~e~SYe is bounded by 
the area under the curve cs/x for ~/(1 + e) < x < ISI which 
is cs. ln((1 + e)lSl/8) _< csln((1 + 8)n/~i). Hence scaling 
the dual variables by 1/ln((1 + 8)n/~) yields a dual feasible 
solution. 

The ratio between the scaled primal and dual solutions is 
now equal to (i + e)ln((1 + e)n[8)[ek which is bounded by 
(1 + e) ln((1 + e)n/8)/elogl+ ~ 5 -1. Now we need to choose 
our constants so that the above quantity is no more than 
(1 + t~). Setting 8 = ((1 + 8)n) -1/~ and substituting this in 
the above expressions gives 

( l+E)ln((1Ws)n) l+l /e) )  

81ogl+e((1 + e)n)l/e 

= ( l + 8 ) ( l + l / e ) l n ( l + e ) n )  

lOgl+e(1 + e)n 

= (1 + e ) . ( 1  + e ) - l ° g ( 1  +8)  _< (1 +e )  2 

So to obtain a ratio of (1 + ix), we have to set e = ~/i--+ c t -  1. 

THEOREM 2.1. Given a fractional set cover problem, one 
can compute primal and dual feasible solutions x and y 
to the covering linear program and its dual packing linear 
program respectively such that cTx/1Ty _< (1 + ~z) with 
O(P(n) .n .  logn/t~ 2) operations, where P(n) denotes the 
time to determine the set with minimum cost-to-requirement 
ratio mins~s Ps. 

Proof Each e E U needs k = logt+e~ -1 rounds until its 
requirement drops below & So in the worst case we need n- 

• 1 

logt+ ~ ~-1 rounds, which for our choice of ~ = n -  ~ becomes 
nlnn/(e,  ln(l + e)). As for small e we have ln(1 + e) _> e/2, 
we obtain O(n- logn/e  2) rounds overall or O(n. logn/tx 2) as 
for small t~, we have ~ -  l > o~/4. Thus in the real 
RAM model, the actual running time is O(P(n). n. logn/tx 2) 
where P(n) denotes the time to determine the variable xi to 
increase in each round. 

3 Computing the size of a maximum independent set of 
a t-perfect graph 

In the following we will use the approximation algorithm 
from the previous section to derive a combinatorial algorithm 
for exactly solving the linear programming relaxation of the 
independent set problem on t-perfect graphs. 
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Given a graph G = (V,E) with vertex set V and edge set 
E, an independent or stable set is a subset I C V such that all 
nodes in I are pairwise nonadjacent. The maximum stable set 
problem is the problem of finding a stable set of maximum 
cardinafity, 

Here we will apply the combinatorial approximation 
algorithm for the covering LP to the problem of finding a 
maximum stable set in a t-perfect graph. We befieve that 
this outfines a general framework to obtain combinatorial 
algorithms for certain packing problems with exponentially 
many constraints fike matching, path matching etc. 

Our goal is to solve exactly the following linear program 
defined by a t-perfect graph via a combinatorial algorithm. 
Let C denote the set of odd cycles (not necessarily simple) 
of a graph G. 

(3.5) max ]~vsvYv 

{u,v}  E E : Yu + Yv _<1 

C E C: ~]vecYv <_ LICI/2], 

u E V :  Yu > 0 .  

Observe that our independent set LP is in fact the dual 
of the primal set cover LP where we have 2-element sets Se 
for each edge and a subset Sc for each odd cycle. 

The rough idea will be as follows: As we know that 
~vsvYv  <_ n holds for each 0-1 solution to (3.5), we know 
that in particular, the optimal solution has objective function 
value OPTtS < n. So choosing c¢ = 1/n, and running 
our (1 + c~) approximation algorithm will yield a feasible 
solution whose objective value is at least OPT/(1 + cx) > 
O P T -  1. In other words we can determine the exact size 
of the maximum stable set of graph G. We will use this 
as a kind of counting oracle later on to actually construct a 
maximum stable set for G. Another, more geometric view of 
the outcome of the approximation algorithm is that we obtain 
a point inside the stable set polytope such that all vertices of 
the polytope, which have higher objective value indeed have 
the optimal objective value. This geometric interpretation 
can also be used to arrive at a maximum stable set of  G, i.e. 
an optimal vertex of the polyhedron. 

3.1 Using the (1 + ~) approximation algorithm for set 
cover 

We will apply our (1 + ~) approximation algorithm for 
fractional set cover to the dual of our independent set LP with 
odd cycle constraints. Again, in the dual (the set cover LP), 
we have a variables Xe for each edge e E E and variables xc  
for each odd cycle C E C. The dual linear program looks as 
follows: 

(3.6) rain ~ Xe -t- ~ xc" LICI/23, 
eEE CE C 

v E V :  ~ X e - t - ~ x  c E l, 
e: vEe vEC 

e E E  : Xe _>0, 

C E C :  xc  >_0. 

Observe that there might be an exponential number of 
variables xc  in this linear program. But recall that the 
(1 + ¢x) approximation algorithm only has to determine in 
each round, which variable to increase by e, and using the 
notation from Section 2 this was the set S E S with minimum 
cost-to-requirement ratio Ps. 

The minimum ratio Pe, e E E is easily determined for 
the variables Xe, but not as trivially determined for the xc  as 
there might be exponentially many of them. 

We will now describe how to find the minimum ratio 
minc~c Pc, where 

pc = Llfl/2J/ ~ rv, 
vEC 

and rv E [0, 1] denotes the requirement of a vertex v E V. 
As we only have to consider odd cycles up to a length n, 
we can assume, IC[ is known and try all possible odd lengths 
IC[ < n. So given ICI we want to find a (possible non-simple) 
odd cycle C' such that ICI = IC'l and ]~veC' rv is maximized. 

This odd cycle C r can be easily computed by the follow- 
ing idea. We construct ICI ÷ 1 copies v I , v 2 , . . . , v  Lcl+l of 
the vertex set V. Denote the i-th copy of a vertex v by v (i). 
For each original undirected edge {v, w} E E, we draw a di- 
rected edge e = (v(i),w (i+l)) for i = 1 , . . . ,  IcI in this layered 
graph. The weight of such an edge will be w(e) = 1 - rw _> O. 
This defines an acycfic graph G* which has (ICI + 1)-IVl 
nodes and Ifl" [El edges. 

Then we compute for every node v E V the shortest 
path from its representative in V l to its representative in 
vlCl+l. Clearly, this path has length ICI and represents a 
(possibly non-simple) odd cycle in the original graph. On 
the other hand, each odd (possibly non-simple) cycle W in 
the original graph of length IcI is represented as a path from 
v(0 to v(ICl+0 where v is a member of W. The length of 
this path in the layered graph is equal to ICI - ~v~W rv. So 
the shortest such path is the one which maximizes ~vEw rv 
which is exactly what we need. 

PROPOSITION 3.1. Given an undirected graph G = (V,E) 
and node weights rv E [0,1] f o r  v E V, one can compute the 
minimum cost-to-requirement ratio Pc = llCl/2J / ~veC rv in 
time O(V 2 . E). 

Proof. It suffices to solve the single source shortest path 
problem in the layered graph with IV I + 1 layers for each 
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source node v in V l in time O(V.  E) each. The length of  
all odd cycles involving v can be read off the respective 
representatives of  v in the odd layers of  the constructed graph 
in O(V) time, which implies the assertion. 

LEMMA 3.1. The size of a maximum stable set of a t- 
perfect graph can be computed in O(V 5. E.  logV) arithmetic 
operations on numbers of  length at most O( (n logn) 2) bits. 

Proof. From the preceding discussion it follows that a 1 + 
l / n  approximation to the covenng program (3.6) yields 
the size of  the largest stable set in a t-perfect graph G. 
Combining Proposition 3.1 and Theorem 2.1 and choosing 
o~ = 1/n yields a bound of  O(V 5. E .  logV) arithmetic 
operations. 

A bound on the size of  the numbers involved can be 
obtained by noting that the requirements on the vertices 
are of  the form (1 + e)i/(1 + e)k where 0 < i < k and 
k = O(e-21ogn). Since, e = O(n -1) the requirements on 
the vertices can be represented using only O(klogn) = 
O( (nlogn) 2) bits. 

4 Construct ing a m a x i m um  stable set 

In this section we will show how to use our (1 + ~¢) approx- 
imation algorithm as a counting oracle to actually construct 
a maximum independent set of  a graph G. For our algorithm 
we use the fact that t-perfectness is a hereditary property. 
This result is folklore but we provide a proof for the sake of  
completeness. 

LEMMA 4.1. Let G = (V, E) be a t-perfect graph and u E V 
be a vertex of G. Then the graph Gu obtained by removing u 
from G is t-perfect. 

Proof. We have to show that the odd cycle polytope 
Podd(Gu) of Gu is integral. To see this, it is enough to show 
that Podd(Gu) is the projection of  the face F = Podd (G) I"1 {x E 
l~n I xu = 0} onto the variables xv, v E V - {u}. We write 
a point x of F in the form (O,xv-{u}), where xv-{u} are the 
components of  x indexed by V - {u}. Notice that a point x of  
the form (0,Xv_{u}), wherexv_{u} E P, xld (G~) cannot violate 
an odd cycle of  G which uses the vertex u. From this it fol- 
lows that F D {x E IR" Ix = (O,xv-{u}), xv-{u} 6 Podd(Gu)}. 
Since an odd cycle of  Gu is also an odd cycle of  G, we 
conclude also that F C {x E IR n Ix  = (O,xv_{u}),Xv_{u} E 
Poad(Gu)}. From this we conclude the lemma, since the face 
of  an integral polyhedron is again an integral polyhedron. 

The construction of  a maximum stable set of  a t-perfect 
graph G now works as follows. We iteratively construct in- 
dependent sets So C Sl, . . .  , C Sk of  G and graphs Go , . . . ,  Gk 
such that Sk is a maximum independent set of  G and Gi+l 
results from Gi via the deletion of one or several nodes. We 
initialize S with the empty set and maintain the following 
invariant: 

There exists a maximum independent set of  G 
which is the union of  Si and a maximum indepen- 
dent set of  Gi. 

We begin with So = 0 and Go = G. In step i, compute a 
(1 + 1/n) approximation of  the linear program (3.6) defined 
by Gi. This procedure gives us the size ki of  a maximum 
stable set of  Gi. Now we check whether a particular vertex 
u E V/ is a member of  all maximum stable sets of  Gi by 
removing the vertex from Gi. The resulting graph Gi,u is 
still t-perfect. We again run the (1 + l /n)-approximation 
algorithm on the linear program (3.6) defined by Gi,u. If  the 
size of  a maximum independent set of  Gi,u is less than ki, 
then u has to be in each maximum stable set of  Gi. In this 
case we update S = S + u and continue with the graph Gi+l, 
which results from Gi via removing u and all the neighbors 
of  u. I f  the size of  a maximum independent set of  Gi,u is k, 
then we continue the procedure with Gi+l = Gi,u. Clearly, 
the procedure terminates after n rounds with the correct 
result. 

Using Lemma 3.1 we obtain the following running time 
for our procedure. 

THEOREM 4.1. 7here exists a combinatorial algorithm 
which computes a maximum stable set of a t-perfect graph 
in time O(V 6. E . logV). 

Final remarks 

We presented a combinatorial algorithm for the maximum 
stable set problem for t-perfect graphs, which does not make 
use of  an explicit linear programming algorithm or geomet- 
rical tools such as the ellipsoid method. The crux of  the al- 
gorithm is to make use of  a general (1 + ct)-approximation 
scheme for packing/coveting problems which we presented 
in Sections 2 and 3. Making use of  the structure of  the stable 
set polytope, we employ this approximation scheme in Sec- 
tion 4 as a counting oracle to actually construct a maximum 
independent set of  a t-perfect graph. 

The problem of  moving from an approximate frational 
stable set solution to an integral solution of  at least the same 
quality can be phrased as the problem of moving from a 
(possibly interior) point of  a polytope to a vertex solution 
with an at least as large objective function value. This can be 
done by purely geometric means. However we were aiming 
for a purely combinatorial algorithm and hence have not 
elaborated on this approach. 
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