
517

A Combinatorial Algorithm for Computing a Maximum Independent
Set in a t-perfect Graph

Friedrich Eisenbrand * Stefan Funke * t Naveen Garg ~ Jochen Ktnemann §

Abstract

We present a combinatorial polynomial time algorithm to
compute a maximum stable set of a t-perfect graph. The
algorithm rests on an e-approximation algorithm for general
set covering and packing problems and is combinatorial in
the sense that it does not use an explicit linear programming
algorithm or methods from linear algebra or convex geom-
etry. Instead our algorithm is based on basic arithmetic op-
erations and comparisons of rational numbers which are of
polynomial binary encoding size in the input.

1 Introduction

A stable or independent set S C_ V of an undirected
graph G = (VIE) is a subset of the nodes of G which are
pairwise nonadjacent. The stable set problem is the problem
of finding a stable set of a graph G with maximum cardinality
and is NP-hard [5].

The stable set problem can be formulated as an integer
program with the following linear programming relaxation:

(1.1) max Z Yv
vEV

{ u , v } t E : Yu+yv _<1

u t V : Yu >0.

This linear programming relaxation (1.1) has fractional
vertex solutions. An odd cycle of G is a multiset C =
{v t , . . . , Vk } of nodes such that k < IVI is odd and {Vi, Vi-t.l } 6
E for all i = 1,.. . , k - 1 and {vk,vt} 6 E 1. I f C is an odd
cycle, then each characteristic vector of a stable set of G

----~en, funke@mpi - sb. mpg. de, Max-Planck-institut fiir Infor-

matik, Stuhlsatzenhansweg 85, 66123 Saarbriickun, Germany
tPartially supported by the IST Programme of the EU under contract

number IST- 1999-14186 (ALCOM-PT).
~ :naveen@cse . i i t d . e r n e t , i n , Indian Institute of Technology,

New Delhi. This work was done while the author was visiting the Max-
Planck-Institut far Informatik, Germany on a Humboldt award.

§ j o c h e n @ c m u . edu , Carnegie Mellon University, GSIA 211 Posner
Hall, Pittsburgh, PA 15213. This material is based upon work supported by
the National Science Foundation under Grant No. 0105548.

I If C is just a set, we have a simple cycle; but here we are also allowing
non-simple cycles.

satisfies the odd cycle inequality

(1.2) ~ Yv _< [IcI/2J-
vtC

For a graph G we denote the polytope defined by the inequal-
ities (1.1) and all odd cycle inequalities (1.2) by Podd(G).

A graph G is t-perfect, if its odd cycle polytope Pond is
a 0/1 polytope. The study of these graphs was suggested by
Chwital [2]. The odd cycle inequalities can be separated in
polynomial time [6], i.e., one can decide in polynomial time
whether one of the inequalities (1.2) violates a given point
x* and if so, find such an inequality. From the equivalence
of separation and optimization [10, 12, 8] it follows that
the ellipsoid method [11] can be used to optimize a linear
function over Pad(G) in polynomial time and consequently
solve the weighted stable set problem for t-perfect graphs
in polynomial time. However, the ellipsoid method relies
heavily on division, rounding and approximation. This is
due to the fact that, conceptually, one even leaves the field of
rationals and needs to compute square roots. This introduces
the issue of necessary accuracy such that the algorithm is
guaranteed to run in polynomial time and to produce correct
results in the bit-model.

1.1 Main results. We provide the first combinatorial al-
gorithm for computing a maximum stable set in a t-perfect
graph. This we achieve by considering the dual of the lin-
ear programming relaxation of the integer program for the
maximum stable set in t-perfect graphs. The dual, which is a
covering problem, can be solved to within a (1 + o 0 approx-
imation using a combinatorial algorithm for approximating
fractional set cover. For a suitable choice of ~ this leads to
a procedure for computing the size of a maximum stable set
in a t-perfect graph which is then used to construct the actual
stable set.

We believe that such an approach could be applied to
other combinatorial optimization problems for which the
only algorithms known are based on the ellipsoid method.
Further, while our algorithm for maximum stable set in t-
perfect graphs does not significantly outperform the algo-
rithm based on the elfipsoid method, it does provide a com-
binatorial approach to this problem, which we believe can be
fine-tuned to obtain a much faster algorithm.

518

1.2 Related work. Combinatorial algorithms for the stable
set problem of t-perfect graphs are not known and a non-
polyhedral characterization of the class of t-perfect graphs
has, so far, not been provided. However some subclasses of
t-perfect graphs have been identified which can be charac-
terized and recognized in polynomial time. These include
bipartite graphs, almost bipartite graphs [4], series parallel
graphs [1, 2], graphs that do not contain an odd K4 [6] and
graphs that do not contain a so called badK4 [7]. Combinato-
rial algorithms for the stable set problem have been provided
for bipartite graphs, almost bipartite graphs [4] and series
parallel graphs [1, 2].

The search for combinatorial algorithms for polynomial
problems for which only ellipsoidal algorithms are known
has stimulated a lot of research in the field of combinatorial
optimization. Recent breakthroughs include the combinato-
rial algorithms for submodular function minimization [14, 9]
and the combinatorial algorithm for path-matching prob-
lems [15].

The combinatorial algorithm for approximating frac-
tional set cover is an unpublished result of Garg and Ktne-
mann; both the algorithm and its analysis are a straight-
forward extension of the greedy algorithm for integral set
cover [3]. Similar such algorithms have been obtained by
Plotkin, Shmoys and Tardos [13] using Lagrange relaxations
and by Young [17, 18] using the technique of oblivious
rounding.

2 A (1 + ~)-approximation algorithm for the fractional
set cover problem

The minimum weight set cover problem is defined as fol-
lows. Given a universe U = {el , . . . ,en} of n elements, a
(potentially exponential-size) collection ,5 = {S1,$2, ...,Sk}
of subsets of U and a cost function c : ,5 --+ Q+, find a subset
of,5 of minimum cost which covers all the elements in U.

The problem can be formulated as an integer linear
program with the following linear programming relaxation:

(2.3) rain ~ csxs
SES

e E U : ~ xs >1,
S:eES

S E,5 : xs >_0.

In this section we will present a combinatorial (1 + ~x)-
approximation algorithm for the linear programming relax-
ation of the set cover problem.

We will first review the well-known greedy algorithm
which computes an integral set cover with cost at most
O(logn) times the optimum, see, e.g. [16, p. 108]. For this
we consider the dual of the set cover linear program (2.3):

(2.4) max ~ Y e
eEU

S E ,5 : X Ye < cs
eES

e E U : Ye > 0 .

In each round, the greedy algorithm picks a subset
S E ,5 which minimizes the ratio Ps = cs/(~eesre), where
re denotes the 'requirement' of element e, i.e. we have
re = 1 if it is not covered by any set which we have picked
so far, re = 0 otherwise. In the following we assume that
we can find such a subset S E ,5 with minimum Ps value in
polynomial time.

We set re = 0 for the newly covered elements e E U in
this round and proceed until all e E U are covered. How can
we bound the ' quality' of this solution?

Consider the dual of the set cover linear program (2.4).
In each round, when picking a set S (and therefore setting
re = 0 for all e E S which were not covered before), we set
each dual variable Ye of the newly covered elements of this
round to Ye := Ps" re.(Here, of course, we have re = 1, but we
will later change the algorithm such that values r e ~ {0,1 }
might occur.)

Clearly, in any stage of this algorithm we have
~s~sXscs = ~eEuYe, but only the primal solution is feasi-
ble at the end. How 'infeasible' can the dual solution be?
Consider the constraint for one particular S E ,5 in the dual

£ Y e _< cs,
eES

and let e l , . . . ,era be an ordering of the elements of S in
increasing order of the rounds in which the elements were
covered. We claim that Yei _< cs/(m - i + 1). Assume that S'
is the set that first covers ei. As S ~ is chosen in such a way
that the average cost of the newly covered elements in S ~ is
minimum, this average cost must be less than the average
cost of the elements which would be newly covered by S.
At this point in time, there are at least m - i + 1 uncovered
elements of S and therefore Ye _< cs/(m - i + 1). Hence we
have

h=m
~ Y e < cs" ~ l / h < c s . l n (n + l).
eES h=l

So each dual constraint is violated by at most a factor of
ln(n + 1). Hence, scaling the dual variables by 1/ln(n + 1)
yields a feasible dual solution which has objective value at
least 1/ln(n + 1) times the value of the primal (feasible)
solution.

PROPOSITION 2.1. The greedy algorithm computes a set
cover which has size at most Inn times the size of the optimal
set cover.

519

How can we modify the algorithm to obtain primal and
dual solutions which are at most (1 + t~) away from each
other? The crucial idea is not to select a set S 'entirely',
i.e. setting xs = 1, but just adding some small value e to xs,
thereby obtaining a greedy algorithm with finer granularity.
The choice of 8 will depend on the quality of the approxima-
tion we wish to achieve.

So again, in each round we 'pick' the set S which
minimizes the cost-to-requirement ratio

p s = c s / X r e
eES

and update the primal variables

xS = xs + 8,

as well as the dual variables

y e = Y e + P S ' r e . e / (l + e) , e E S.

Furthermore we decrease the requirements

re = r e / (l + e) , e E S .

Notice here that the decrease Are of the requirement of e E S
is not 8, as in the simple greedy algorithm for set covering.
Instead, the decrease is Are = re" e/(1 + e). The dual variable
Ye is basically increased by psA~. If at some point the
requirement re falls below some threshold 5 (which we chose
later on), we set it to zero.

LEMMA2.1. At any time throughout the algorithm
Zses csxs = (1 + e) Ee~u Ye holds.

Proof In each round, if the primal objective function is in-
creased by cs .e , the dual objective function value is in-
creased by EecS ps're" £/(1 + e) and since Ps = cs/(EeeS re),
the dual increase is cs. e / (l + e).

When the algorithm terminates, we have for each e E U,
~S:eESXS > 8- k, where k is the smallest number such that
(1 + 8) -k < 5. Scaling primal variables by 1](e. k) will
therefore ensure a primal feasible solution•

Let us now argue how far the dual solution is from
feasibility.

LEMMA 2.2. For any set S E ,5, we have ~e~SYe _<
cs ln((1 + e)-n/~) .

Proof Consider the sum of the requirements ~eES re of S.
This quantity is IS I at the beginning and at least ~ in the 'last'
round where some element of S is covered. Consider a round
where some set S I has minimum ratio Ps' and where the
requirements of S are changed, i.e., there exists an element
e E S n S' with re > 0 .

If the sum of the requirements is decreased by some
amount 13 = ~eeSnS' re" (e/(1 + 8)), then EeeSYe increases
by Ps" I~ which is at most Ps" ~.

Now consider the ratio Ps = cs/~e~S re as a function of
the requirement ~e~S re of the elements in S. It is easy to
see that the sum of all increments of ~e~SYe is bounded by
the area under the curve cs/x for ~/(1 + e) < x < ISI which
is cs. ln((1 + e)lSl/8) _< csln((1 + 8)n/~i). Hence scaling
the dual variables by 1/ln((1 + 8)n/~) yields a dual feasible
solution.

The ratio between the scaled primal and dual solutions is
now equal to (i + e)ln((1 + e)n[8)[ek which is bounded by
(1 + e) ln((1 + e)n/8)/elogl+ ~ 5 -1. Now we need to choose
our constants so that the above quantity is no more than
(1 + t~). Setting 8 = ((1 + 8)n) -1/~ and substituting this in
the above expressions gives

(l+E)ln((1Ws)n) l+l /e))

81ogl+e((1 + e)n)l/e

= (l + 8) (l + l / e) l n (l + e) n)

lOgl+e(1 + e)n

= (1 + e) . (1 + e) - l ° g (1 +8) _< (1 +e) 2

So to obtain a ratio of (1 + ix), we have to set e = ~/i--+ c t - 1.

THEOREM 2.1. Given a fractional set cover problem, one
can compute primal and dual feasible solutions x and y
to the covering linear program and its dual packing linear
program respectively such that cTx/1Ty _< (1 + ~z) with
O(P(n) .n . logn/t~ 2) operations, where P(n) denotes the
time to determine the set with minimum cost-to-requirement
ratio mins~s Ps.

Proof Each e E U needs k = logt+e~ -1 rounds until its
requirement drops below & So in the worst case we need n-

• 1

logt+ ~ ~-1 rounds, which for our choice of ~ = n - ~ becomes
nlnn/(e, ln(l + e)). As for small e we have ln(1 + e) _> e/2,
we obtain O(n- logn/e 2) rounds overall or O(n. logn/tx 2) as
for small t~, we have ~ - l > o~/4. Thus in the real
RAM model, the actual running time is O(P(n). n. logn/tx 2)
where P(n) denotes the time to determine the variable xi to
increase in each round.

3 Computing the size of a maximum independent set of
a t-perfect graph

In the following we will use the approximation algorithm
from the previous section to derive a combinatorial algorithm
for exactly solving the linear programming relaxation of the
independent set problem on t-perfect graphs.

520

Given a graph G = (V,E) with vertex set V and edge set
E, an independent or stable set is a subset I C V such that all
nodes in I are pairwise nonadjacent. The maximum stable set
problem is the problem of finding a stable set of maximum
cardinafity,

Here we will apply the combinatorial approximation
algorithm for the covering LP to the problem of finding a
maximum stable set in a t-perfect graph. We befieve that
this outfines a general framework to obtain combinatorial
algorithms for certain packing problems with exponentially
many constraints fike matching, path matching etc.

Our goal is to solve exactly the following linear program
defined by a t-perfect graph via a combinatorial algorithm.
Let C denote the set of odd cycles (not necessarily simple)
of a graph G.

(3.5) max]~vsvYv

{u,v} E E : Yu + Yv _<1

C E C: ~]vecYv <_ LICI/2],

u E V : Yu > 0 .

Observe that our independent set LP is in fact the dual
of the primal set cover LP where we have 2-element sets Se
for each edge and a subset Sc for each odd cycle.

The rough idea will be as follows: As we know that
~vsvYv <_ n holds for each 0-1 solution to (3.5), we know
that in particular, the optimal solution has objective function
value OPTtS < n. So choosing c¢ = 1/n, and running
our (1 + c~) approximation algorithm will yield a feasible
solution whose objective value is at least OPT/(1 + cx) >
O P T - 1. In other words we can determine the exact size
of the maximum stable set of graph G. We will use this
as a kind of counting oracle later on to actually construct a
maximum stable set for G. Another, more geometric view of
the outcome of the approximation algorithm is that we obtain
a point inside the stable set polytope such that all vertices of
the polytope, which have higher objective value indeed have
the optimal objective value. This geometric interpretation
can also be used to arrive at a maximum stable set of G, i.e.
an optimal vertex of the polyhedron.

3.1 Using the (1 + ~) approximation algorithm for set
cover

We will apply our (1 + ~) approximation algorithm for
fractional set cover to the dual of our independent set LP with
odd cycle constraints. Again, in the dual (the set cover LP),
we have a variables Xe for each edge e E E and variables xc
for each odd cycle C E C. The dual linear program looks as
follows:

(3.6) rain ~ Xe -t- ~ xc" LICI/23,
eEE CE C

v E V : ~ X e - t - ~ x c E l,
e: vEe vEC

e E E : Xe _>0,

C E C : xc >_0.

Observe that there might be an exponential number of
variables xc in this linear program. But recall that the
(1 + ¢x) approximation algorithm only has to determine in
each round, which variable to increase by e, and using the
notation from Section 2 this was the set S E S with minimum
cost-to-requirement ratio Ps.

The minimum ratio Pe, e E E is easily determined for
the variables Xe, but not as trivially determined for the xc as
there might be exponentially many of them.

We will now describe how to find the minimum ratio
minc~c Pc, where

pc = Llfl/2J/ ~ rv,
vEC

and rv E [0, 1] denotes the requirement of a vertex v E V.
As we only have to consider odd cycles up to a length n,
we can assume, IC[is known and try all possible odd lengths
IC[< n. So given ICI we want to find a (possible non-simple)
odd cycle C' such that ICI = IC'l and]~veC' rv is maximized.

This odd cycle C r can be easily computed by the follow-
ing idea. We construct ICI ÷ 1 copies v I , v 2 , . . . , v Lcl+l of
the vertex set V. Denote the i-th copy of a vertex v by v (i).
For each original undirected edge {v, w} E E, we draw a di-
rected edge e = (v(i),w (i+l)) for i = 1 , . . . , IcI in this layered
graph. The weight of such an edge will be w(e) = 1 - rw _> O.
This defines an acycfic graph G* which has (ICI + 1)-IVl
nodes and Ifl" [El edges.

Then we compute for every node v E V the shortest
path from its representative in V l to its representative in
vlCl+l. Clearly, this path has length ICI and represents a
(possibly non-simple) odd cycle in the original graph. On
the other hand, each odd (possibly non-simple) cycle W in
the original graph of length IcI is represented as a path from
v(0 to v(ICl+0 where v is a member of W. The length of
this path in the layered graph is equal to ICI - ~v~W rv. So
the shortest such path is the one which maximizes ~vEw rv
which is exactly what we need.

PROPOSITION 3.1. Given an undirected graph G = (V,E)
and node weights rv E [0,1] f o r v E V, one can compute the
minimum cost-to-requirement ratio Pc = llCl/2J / ~veC rv in
time O(V 2 . E).

Proof. It suffices to solve the single source shortest path
problem in the layered graph with IV I + 1 layers for each

521

source node v in V l in time O(V. E) each. The length of
all odd cycles involving v can be read off the respective
representatives of v in the odd layers of the constructed graph
in O(V) time, which implies the assertion.

LEMMA 3.1. The size of a maximum stable set of a t-
perfect graph can be computed in O(V 5. E. logV) arithmetic
operations on numbers of length at most O((n logn) 2) bits.

Proof. From the preceding discussion it follows that a 1 +
l / n approximation to the covenng program (3.6) yields
the size of the largest stable set in a t-perfect graph G.
Combining Proposition 3.1 and Theorem 2.1 and choosing
o~ = 1/n yields a bound of O(V 5. E . logV) arithmetic
operations.

A bound on the size of the numbers involved can be
obtained by noting that the requirements on the vertices
are of the form (1 + e)i/(1 + e)k where 0 < i < k and
k = O(e-21ogn). Since, e = O(n -1) the requirements on
the vertices can be represented using only O(klogn) =
O((nlogn) 2) bits.

4 Construct ing a m a x i m um stable set

In this section we will show how to use our (1 + ~¢) approx-
imation algorithm as a counting oracle to actually construct
a maximum independent set of a graph G. For our algorithm
we use the fact that t-perfectness is a hereditary property.
This result is folklore but we provide a proof for the sake of
completeness.

LEMMA 4.1. Let G = (V, E) be a t-perfect graph and u E V
be a vertex of G. Then the graph Gu obtained by removing u
from G is t-perfect.

Proof. We have to show that the odd cycle polytope
Podd(Gu) of Gu is integral. To see this, it is enough to show
that Podd(Gu) is the projection of the face F = Podd (G) I"1 {x E
l~n I xu = 0} onto the variables xv, v E V - {u}. We write
a point x of F in the form (O,xv-{u}), where xv-{u} are the
components of x indexed by V - {u}. Notice that a point x of
the form (0,Xv_{u}), wherexv_{u} E P, xld (G~) cannot violate
an odd cycle of G which uses the vertex u. From this it fol-
lows that F D {x E IR" Ix = (O,xv-{u}), xv-{u} 6 Podd(Gu)}.
Since an odd cycle of Gu is also an odd cycle of G, we
conclude also that F C {x E IR n Ix = (O,xv_{u}),Xv_{u} E
Poad(Gu)}. From this we conclude the lemma, since the face
of an integral polyhedron is again an integral polyhedron.

The construction of a maximum stable set of a t-perfect
graph G now works as follows. We iteratively construct in-
dependent sets So C Sl, . . . , C Sk of G and graphs Go , . . . , Gk
such that Sk is a maximum independent set of G and Gi+l
results from Gi via the deletion of one or several nodes. We
initialize S with the empty set and maintain the following
invariant:

There exists a maximum independent set of G
which is the union of Si and a maximum indepen-
dent set of Gi.

We begin with So = 0 and Go = G. In step i, compute a
(1 + 1/n) approximation of the linear program (3.6) defined
by Gi. This procedure gives us the size ki of a maximum
stable set of Gi. Now we check whether a particular vertex
u E V/ is a member of all maximum stable sets of Gi by
removing the vertex from Gi. The resulting graph Gi,u is
still t-perfect. We again run the (1 + l /n)-approximation
algorithm on the linear program (3.6) defined by Gi,u. If the
size of a maximum independent set of Gi,u is less than ki,
then u has to be in each maximum stable set of Gi. In this
case we update S = S + u and continue with the graph Gi+l,
which results from Gi via removing u and all the neighbors
of u. I f the size of a maximum independent set of Gi,u is k,
then we continue the procedure with Gi+l = Gi,u. Clearly,
the procedure terminates after n rounds with the correct
result.

Using Lemma 3.1 we obtain the following running time
for our procedure.

THEOREM 4.1. 7here exists a combinatorial algorithm
which computes a maximum stable set of a t-perfect graph
in time O(V 6. E . logV).

Final remarks

We presented a combinatorial algorithm for the maximum
stable set problem for t-perfect graphs, which does not make
use of an explicit linear programming algorithm or geomet-
rical tools such as the ellipsoid method. The crux of the al-
gorithm is to make use of a general (1 + ct)-approximation
scheme for packing/coveting problems which we presented
in Sections 2 and 3. Making use of the structure of the stable
set polytope, we employ this approximation scheme in Sec-
tion 4 as a counting oracle to actually construct a maximum
independent set of a t-perfect graph.

The problem of moving from an approximate frational
stable set solution to an integral solution of at least the same
quality can be phrased as the problem of moving from a
(possibly interior) point of a polytope to a vertex solution
with an at least as large objective function value. This can be
done by purely geometric means. However we were aiming
for a purely combinatorial algorithm and hence have not
elaborated on this approach.

References

[1] M. Boulala and J.-E Uhry. Polytope des indtpendants d'un
graphe stfie-paralltle. Discrete Mathematics, 27(3):225-
243, 1979.

[2] V. Chvfital. On certain polytopes associated with graphs.
Journal of Combinatorial Theory Ser. B, 18:138-154, 1975.

522

[3] V. Chv~tal. A greedy heuristic for the set-covering problem.
Mathematics of Operations Research, 4(3):233-235, 1979.

[4] J. Fonlupt and J.-E Uhry. Transformations which preserve
perfectness and H-perfectness of graphs. In Bonn Workshop
on Combinatorial Optimization (Bonn, 1980), pages 83-95.
North-Holland, Amsterdam, 1982.

[5] M.R. Garey and D. S. Johnson. Computers and Intractability.
A Guide to the Theory ofNP-Completeness. Freemann, 1979.

[6] A. M. H. Gerards and A. Schrijver. Matrices with the
Edmonds-Johnson property. Combinatorica, 6:365-379,
1986.

[7] A. M. H. Gerards and F. B. Shepherd. The graphs with all
subgraphs t-perfect. SIAM Journal on Discrete Mathematics,
I 1(4):524-545 (electronic), 1998.

[8] M. Gr/Stschel, L. Lov~z, and A. Schrijver. The ellipsoid
method and its consequences in combinatorial optimization.
Combinatorica, 1(2):169-197, 1981.

[9] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial,
strongly polynomial-time algorithm for minimizing submod-
ular functions. In ACM, editor, Proceedings of the 32nd an-
nual ACM Symposium on Theory of Computing, pages 97-
106, New York, NY, USA, 2000. ACM Press.

[10] R. M. Karp and C. H. Papadimitriou. On linear characteriza-
tions of combinatorial optimization problems. SIAM Journal
on Computing, I 1(4):620-632, 1982.

[11] L.G. Khachiyan. A polynomial algorithm in linear program-
ming. Doklady Akademii Nauk SSSR, 244:1093-1097, 1979.

[12] M.W. Padberg and M. R. Rao. The russian method for linear
programming III: Bounded integer programming. Technical
Report 81-39, New York University, Graduate School of
Business and Administration, 1981.

[13] S.A. Plotkin, D. B. Shmoys, and 1~. Tardos. Fast approxima-
tion algorithms for fractional packing and coveting problems.
Math. Oper. Res., 20(2):257-301, 1995.

[14] A. Schrijver. A combinatorial algorithm minimizing submod-
ular functions in strongly polynomial time. Journal of Com-
binatorial Theory. Series B, 80(2):346-355, 2000.

[15] B. Spille and R. Weismantel. A generalization of Edmonds'
matching and matroid intersection algorithms. In Proceed-
ings of the Ninth International Conference on Integer Pro-
gramming and Combinatorial Optimization, volume 2337,
pages 9-20. Springer, 2002.

[16] V. V. Vazirani. Approximation algorithms. Springer-Verlag,
Berlin, 2001.

[17] N. E. Young. Randomized rounding without solving the
linear program. In Proceedings of the 6th Annual Symposium
on Discrete Algorithms, pages 170-178. ACM Press, 1995.

[18] N. E. Young. Sequential and parallel algorithms for mixed
packing and covering. In Proceedings of the 42rid Annual
IEEE Symposium on Foundations of Computer Science, pages
538-546, 2001.

