
Problem Set 1

1. Prove that logn! = θ(n logn). Use this to find out if dlogne! and
dlog logne! are polynomially bounded. A function f(n) is said to be poly-
nomially bounded if there exists an integer k such that f(n) = O(nk).

2. Iterated logarithmic function is defined as log∗(n) = min{i ≥ 0 :
logi n ≤ 1}. For example, log∗ 16 = 3 where log is taken w.r.t base 2. Which
is aymptotically larger: log(log∗ n) or log∗(logn)?

3. Write an efficient algorithm that checks whether a given singly linked
list contains a loop. A loop is a sequence of nodes v1, v2, . . . , vk such that
v1 → v2 → . . .→ vk → v1.

4. Consider a stack with an additional operation, MULTIPOP (S, k)
which removes the k top objects of stack S, popping the entire stack if the
stack contains fewer than k objects. The cost of the opearation MULTI −
POP (S, k) is k, while that of PUSH(S, x) and POP (S) is 1. Now consider
a sequence of n stack operations on an initially empty stack, where each op-
eration is either PUSH,POP or MULTIPOP . Prove that the total cost
of these n operations is θ(n).

5. Design a data structure SpecialStack that supports all the stack
operations like push(), pop(), isEmpty(), top() and an additional operation
getMin() which should return minimum element from the SpecialStack. All
these operations of SpecialStack must be O(1). To design SpecialStack,
you should only use standard Stack data structure and no other data struc-
ture like arrays, list, etc.

6. Describe a O(n)-time algorithm that, given a set S of n integers in
sorted order and another integer x, determines whether or not there exist
two elements in S whose sum is exactly x.

7. Given an unsorted array A of size n that may contain duplicates and a
number k < n, design an O(n) algorithm that returns true if array contains
duplicates within a distance of k, ie. there exists i, j ∈ [0, n − 1] such that
A[i] = A[j] and |i− j| < k.

1

