ASSIGNMENT 1

PART I

Implement a stack/queue using an array. Interface is given at the end. Use generics in Java to make sure
that you can use the stack/queue for any type of data. You may assume that the number of elements
inserted into the stack/queue never exceeds 100,000. Do NOT use the inbuilt Stack/Queue class of java.

PART II

We have two queues, the input queue Q1 and the output queue Q2, and one stack S. We are only
allowed to dequeue from Q1 and we are only allowed to enqueue into the output queue Q2. We are
allowed to both push into and pop from the stack.

Consider that we have the numbers 1 2 3 4 5 6 enqueued in Q1. Suppose we perform the following
sequence of operations.

enqueue(Q2, dequeue(Q1))
push(S, dequeue(Q1))
enqueue(Q2, dequeue(Q1))
push(S, dequeue(Q1))
enqueue(Q2, pop(S))
enqueue(Q2, pop(S))
enqueue(Q2, dequeue(Q1))
enqueue(Q2, dequeue(Q1))

then the output queue contains 134256

This is an example of what we call a *stack permutation™* i.e. A stack permutation is a ordering of
numbers from 1 to n that can be obtained from the initial ordering 1, 2, ... n by a sequence of stack
operations as described above.

To clarify this, note that 1 5 3 4 2 6 is *not™* a stack permutation. Intuitively this is because to enqueue
5 into Q2 after 1 we would have to push 2 3 4 into the stack which would then be output in the order 4
3 2, not in the order 3 4 2.

In this assignment you will be given a permutation of n numbers and asked to check if it is a stack
permutation or not. The TA will give you the number n as input and will give you a permutation. If it is
a stack permutation your program will have to return the sequence of operations that formed that
permutation. If it is not a permutation, your program will have to say it is not a permutation, and will
have to give the reason why (as given above).

Stack Interface/**

* Interface for a stack: a collection of objects that are inserted
* and removed according to the last-in first-out principle. This
* interface includes the main methods of java.util. Stack.

*

* @author Roberto Tamassia



* @author Michael Goodrich
* @see EmptyStackException
*/

public interface Stack<E> {
/**
* Return the number of elements in the stack
* @return number of elements in the stack
*/
public int size();
/*k
* Return whether the stack is empty.
* @return true if the stack is empty, false otherwise
*/
public boolean isEmpty();
/**
* Inspect the element at the top of the stack
* @return top element in the stack
* @exception EmptyStackException if the stack is empty.
*/
public E top()
throws EmptyStackException;
/**
* [nsert an element at the top of the stack
* @param element to be inserted.
*/
public void push (E element);
VeSS
* Remove the top element from the stack.
* @return element removed
* @exception EmptyStackException if the stack is empty.
*/
public E pop()
throws EmptyStackException;

Queue Interface

public interface Queue<E> {
/**
* Returns the number of elements in the queue
* @return number of elements in the queue
*/
public int size();
V£



* Returns whether the queue is empty.

* @return true if the queue is empty, false otherwise
*/

public boolean isEmpty();
/*%

* Inspects the element at the front of the queue

* @return element at the front of the queue

* @exception EmptyQueueException if the queue is empty.
*/

public E front() throws EmptyQueueException;
/*k

* Inserts an element at the rear of the queue

* @param element new element to be inserted.

*/

public void enqueue (E element);
/**

* Removes the element at the front of the queue

* @return element removed

* @exception EmptyQueueException if the queue is empty.
*/

public E dequeue () throws EmptyQueueException;

References

http://www.cse.iitd.ac.in/~subodh/courses/CSL201/Assignmentl.htm

http://www.cse.iitd.ernet.in/~tripathy/CSL201 11-12/assign2.html



http://www.cse.iitd.ac.in/~subodh/courses/CSL201/Assignment1.htm
http://www.cse.iitd.ernet.in/~tripathy/CSL201_11-12/assign2.html

