Tutorial Sheet 9

Oct 5,6,7

- 1. Find a recurrence relation for the number of ternary strings of length n that contain either two consecutive 0s or two consecutive 1s.
- 2. Find a recurrence relation for the number of bit strings of length n that contain the string 01.
- 3. Find the recurrence relation satisfied by R_n , where R_n is the number of regions that a plane is divided into by n lines, if no two of the lines are parallel and no three of the lines go through the same point.
- 4. In the Tower of Hanoi puzzle, suppose our goal is to transfer all n disks from peg 1 to peg 3, but we cannot move a disk directly between pegs 1 and 3. Each move of a disk must be a move involving peg 2. As usual, we cannot place a disk on top of a smaller disk. Find a recurrence relation for the number of moves required to solve the puzzle for n disks with this added restriction.
- 5. Let A_n be the $n \times n$ matrix with 2's on its main diagonal, 1's in all positions next to a diagonal element, and 0's everywhere else. Find a recurrence relation for d_n , the determinant of A_n . Solve this recurrence relation to find a formula for d_n .
- 6. Let S(m, n) denote the number of onto functions from a set with m elements to a set with n elements. Show that S(m, n) satisfies the recurrence relation $S(m, n) = n^m \sum_{k=1}^{n-1} C(n, k) S(m, k)$ whenever $m \ge n$ and n > 1, with the initial condition S(m, 1) = 1.