Tutorial Sheet 7

Sept 21, 23, 24

1. Let n be a positive integer and let $n-1=2^{s} t$, where s is a nonnegative integer and t is an odd positive integer. We say that n passes Miller's test for the base b if either $b^{t} \equiv 1(\bmod n)$ or $b^{2^{j}} t \equiv-1(\bmod n)$ for some j with $0 \leq j \leq s-1$. It can be shown that a composite integer n passes Miller's test for fewer than $n / 4$ bases b with $1<b<n$. A composite positive integer n that passes Miller's test to the base b is called a strong pseudoprime to the base b.
(a) Show that if n is prime and b is a positive integer not a multiple of n then n passes Miller's test to the base b.
(b) Show that 2047 is a strong pseudoprime to the base 2 by showing that it passes Miller's test to the base 2, but is composite.
2. Recall that n is a Carmichael number if n is composite and $a^{n-1} \equiv 1(\bmod n)$ for all $2 \leq a \leq n-1, g c d(a, n)=1$.
(a) Show that 1729 is a Carmichael number.
(b) Show that 2821 is a Carmichael number.
(c) Show that if $n=p_{1} p_{2} \cdots p_{k}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes that satisfy $p_{j}-1 \mid n-1$ for $j=1,2, \ldots, k$, then n is a Carmichael number.
3. If m is a positive integer, the integer a is a quadratic residue of m if $\operatorname{gcd}(a, m)=1$ and the congruence $x^{2} \equiv a(\bmod m)$ has a solution. In other words, a quadratic residue of m is an integer relatively prime to m that is a perfect square modulo m. If a is not a quadratic residue of m and $\operatorname{gcd}(a, m)=1$, we say that it is a quadratic nonresidue of m. For example, 2 is a quadratic residue of 7 because $\operatorname{gcd}(2,7)=1$ and $3^{2} \equiv 2(\bmod 7)$ and 3 is a quadratic nonresidue of 7 because $\operatorname{gcd}(3,7)=1$ and $x^{2} \equiv 3(\bmod 7)$ has no solution.
(a) Which integers are quadratic residues of 11 ?
(b) Show that if p is an odd prime and a is an integer not divisible by p, then the congruence $x^{2} \equiv a(\bmod p)$ has either no solutions or exactly two incongruent solutions modulo p.
(c) Show that if p is an odd prime, then there are exactly $(p-1) / 2$ quadratic residues of p among the integers $1,2, \ldots, p-1$.
4. If p is an odd prime and a is an integer not divisible by p, the Legendre symbol $\left(\frac{a}{p}\right)$ is defined to be 1 if a is a quadratic residue of p and -1 otherwise.
(a) Show that if p is an odd prime and a and b are integers with $a \equiv b(\bmod p)$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
(b) Prove Euler's criterion, which states that if p is an odd prime and a is a positive integer not divisible by p, then $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$. [Hint: If a is a quadratic residue modulo p, apply Fermat's little theorem; otherwise, apply Wilson's theorem]
(c) Use the above to show that if p is an odd prime and a and b are integers not divisible by p, then $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$
5. Show that if p is an odd prime, then -1 is a quadratic residue of p if $p \equiv 1(\bmod 4)$, and -1 is not a quadratic residue of p if $p \equiv 3(\bmod 4)$.
6. Find all solutions of the congruence $x^{2} \equiv 29(\bmod 35)$. [Hint: Find the solutions of this congruence modulo 5 and modulo 7 , and then use the Chinese remainder theorem.]
