## Tutorial Sheet 6

## Sept 6,8,9

- 1. Show that if a and b are both positive integers, then  $(2^a 1) \mod (2^b 1) = 2^a \mod b 1$ .
- 2. Use the above to show that if a and b are positive integers, then  $gcd(2^a 1, 2^b 1) = 2^{gcd(a,b)} 1$ . [Hint: Show that the remainders obtained when the Euclidean algorithm is used to compute  $gcd(2^a 1, 2^b 1)$  are of the form  $2^r 1$ , where r is a remainder arising when the Euclidean algorithm is used to find gcd(a,b).]
- 3. Prove or disprove that  $p_1p_2\cdots p_n+1$  is prime for every positive integer n, where  $p_1, p_2, ..., p_n$  are the n smallest prime numbers.
- 4. Use the Chinese remainder theorem to show that an integer a, with  $0 \le a < m = m_1 m_2 \cdots m_n$ , where the positive integers  $m_1, m_2, \ldots, m_n$  are pairwise relatively prime, can be represented uniquely by the *n*-tuple ( $a \mod m_1, a \mod m_2, \ldots, a \mod m_n$ ).
- 5. Show with the help of Fermat's little theorem that if n is a positive integer, then 42 divides  $n^7 n$ .
- 6. Show that the system of congruences  $x \equiv a_1 \pmod{m_1}$  and  $x \equiv a_2 \pmod{m_2}$ , where  $a_1, a_2, m_1$  and  $m_2$  are integers with  $m_1 > 0$  and  $m_2 > 0$ , has a solution if and only if  $gcd(m_1, m_2)|(a_1 a_2)$ .
- 7. Show that if the system in the above question has a solution, then it is unique modulo  $lcm(m_1, m_2)$ .
- 8. Prove the correctness of the following rule to check if a number, N, is divisible by 7: Partition N into 3 digit numbers from the right  $(d_3d_2d_1, d_6d_5d_4, \ldots)$ . The alternating sum  $(d_3d_2d_1 d_6d_5d_4 + d_9d_8d_7 \ldots)$  is divisible by 7 if and only if N is divisible by 7.
- 9. Show that if  $ac \equiv bd \pmod{m}$  then  $a \equiv b \pmod{m/d}$  where d = gcd(a, b).
- 10. How many zeroes are at the end of the binary expansion of  $100_{10}$ ?