Solutions to Sheet 8

1

Let $A_{i}, 1 \leq i \leq 3$, be the set of sequences in which didgit i does not appear. Then we are interested in $\left|\neg\left(A_{1} \cup A_{2} \cup A_{3}\right)\right|$. Now $\left|A_{i}\right|=9^{n},\left|A_{i} \cap A_{j}\right|=8^{n}$ and $\left|A_{1} \cap A_{2} \cap A_{3}\right|=7^{n}$. Hence $\left|\left(A_{1} \cup A_{2} \cup A_{3}\right)\right|=3 \cdot 9^{n}-3 \cdot 8^{n}+7^{n}$ and so $\left|\neg\left(A_{1} \cup A_{2} \cup A_{3}\right)\right|=$ $10^{n}-3 \cdot 9^{n}+3 \cdot 8^{n}-7^{n}$.

2

Let A_{i} be the set of sequences in which both copies of the $i^{\text {th }}$ character of the alphabet occur together. Then we are interested in $\left|\neg\left(\cup_{i=1}^{26} A_{i}\right)\right|=\frac{52!}{2^{26}}-\left|\cup_{i=1}^{26} A_{i}\right|$. Now $\left|A_{i}\right|=\frac{51!}{2^{25}},\left|A_{i} \cap A_{j}\right|=\frac{50!}{2^{24}}$ and $\left|\cap{ }_{r=1}^{k} A_{i_{r}}\right|=\frac{(52-r)!}{2^{26-r}}$. So the required quantity is $\sum_{r=0}^{26}(-1)^{r}\binom{26}{r} \frac{(52-r)!}{2^{26-r}}$.

3

Interpreting this as the number of ways of choosing 13 cards from 52 such that at least one suit is missing. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the sets of hands which have spades, clubs, hearts and diamonds missing. Then we are interested in $\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|$. Now $\left|A_{i}\right|=\binom{39}{13},\left|A_{i} \cap A_{j}\right|=\binom{26}{13},\left|A_{i} \cap A_{j} \cap A_{k}\right|=1$ and $\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right|=0$. Hence $\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|=$ $4 \cdot\binom{39}{13}-6 \cdot\binom{26}{13}+4$.

4

Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ and let $d \mid n$. Now $\mu(d) \neq 0$ if d is a product of distinct prime factors. If d is a product of r distinct prime factors then $\mu(d)=(-1)^{r}$ and hence $\sum_{d \mid n} \mu(d)=\sum_{r=0}^{k}\binom{k}{r}(-1)^{r}$. Since $(1+x)^{k}=\sum_{r=0}^{k}\binom{k}{r} x^{r}$, hence $\sum_{r=0}^{k}\binom{k}{r}(-1)^{r}=0$.

5

The number of different outcomes is 6^{8}. Let A_{i} be the outcomes in which i does not appear. Then we are interested in $\left|\neg\left(A_{1} \cup A_{2} \cup \cdots \cup A_{6}\right)\right|$. Now $\left|A_{i}\right|=5^{8},\left|A_{i} \cap A_{j}\right|=4^{8},\left|A_{i} \cap A_{j} \cap A_{k}\right|=3^{8}$ and $\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right|=2^{8}$. Then $\left|A \cup A_{2} \cup \cdots \cup A_{6}\right|=6 \cdot 5^{8}-\binom{6}{2} \cdot 4^{8}+\binom{6}{3} \cdot 3^{8}-\binom{6}{4} \cdot 2^{8}+\binom{6}{5} \cdot 1$, and so the number of outcomes in which all numbers appear is $6^{8}-6 \cdot 5^{8}+15 \cdot 4^{8}-20 \cdot 3^{8}+15 \cdot 2^{8}-6$.

6

We will first count the number of bit strings containing 5 consecutive zeros. Treat the first occurence of 5 consecutive zeros as a cluster, C. Then the 10 length bit string can be viewed as a 6 length string in which one character is C while the remaining are 0 or 1 and the character immediately preceeding C is a 1 .

1. There are 2^{5} such strings which begin with a C.
2. If C is not the first character then we can combine it with the preceding 1 to form a character C^{\prime}. So now we have to count the number of 5 length strings in which one character is C^{\prime} and the remaining are 0 or 1 . The number of such strings is $2^{4} \times 5=80$.

Hence there are $80+32=112$ strings with 5 consecutive zeroes. By symmetry the number of strings with 5 consecutive 1 's is also 112 and since there are exactly 2 strings which contain both 5 consecutive 0 's and 5 consecutive 1 's, the required number of strings is $112+112-2=222$.

7

A truth table for a proposition on n variables has 2^{n} rows, one for each of the 2^{n} choices of the input variables. The value of the proposition for each input is 0 or 1 and hence a truth table is uniquely specified by a 2^{n}-bit vector. Since there are $2^{2^{n}}$ such bit vectors that is the also the number of different truth tables.

8

Once we decide on the two neighbors of each person, there are exactly 2 ways of seating them on a circular table. The number of ways of seating r people around a circular table is $(r-1)$!. When two seating plans in which each person has the same two neighbors are considered indistinguishable, the number of distinct ways of seating r people reduces to $(r-1)!/ 2$. Since we have to choose these r people from a set of n, the total number of different possibilities is $C(n, r) *(r-1)!/ 2$.

Since $C(n, r)=C(n, n-r)$, the expression on the left can be rewritten as $\sum_{k=1}^{n}\binom{n}{k}\binom{n}{n-k+1}$ which can be interpreted as the number of ways of picking $n+1$ balls from n red and r blue balls where at least one red and one blue ball has to be included. The restriction of including one red/blue ball is no restriction and hence this is just the number of ways of picking $n+1$ balls from $2 n$ balls which is $C(2 n, n+1)$. Hence we have to show that $C(2 n, n+1)=C(2 n+2, n+1) / 2-C(2 n, n)$. This is true since $C(2 n, n+1)+C(2 n, n)=C(2 n+1, n+1)=C(2 n+2, n+1) / 2$.

10

After distributing one object to each of the 4 boxes we are left with 2 objects. These 2 objects can both go into the same box or into 2 different boxes yielding 2 ways of doing the distribution.

11

For any way of defining (A, B) such that $A \subseteq B \subseteq S$, each element of S is either in $A, B-A$, or $S-B$. Hence with very ordered pair (A, B) we can associate a unique sequence of length n where each element of the sequence corresponds to an element of the set S and is one of $A, B-A$ or $S-B$. Since the number of such sequences is 3^{n} that is also the number of ordered pairs (A, B) with the desired property.

