Solutions to Sheet 7

1(a)

Let $n-1=2^{s} t$ and consider the quantities $b^{2^{s} t} \bmod n, b^{2^{s-1} t} \bmod n, \ldots, b^{2 t} \bmod n, b^{t} \bmod n$. Since n is prime, by Fermat's little theorem $b^{n-1} \equiv 1(\bmod n)$. Further since n is prime, $x^{2} \equiv 1(\bmod n)$ implies either $x \equiv 1(\bmod n)$ or $x \equiv-1(\bmod n)$. This implies that the qunatiities considered above are either all 1 or we have a sequence of 1's followed by a -1 . In the former case we have $b^{t} \equiv 1(\bmod n)$ while in the latter we have a $j, 0 \leq j \leq s-1$, such that $b^{2^{j} t} \equiv-1$ ($\bmod n)$. Thus n passes the Miller test.

1(b)

Note that $2047=23 \times 89$ and is hence composite. Further $2046=2 \times 1023$ and so to show that 2047 pases the miller test it suffices to show that $2^{1023} \equiv 1(\bmod 2047)$. Note that $2^{11}=2048 \equiv 1(\bmod 2047)$. Hence $2^{1023}=2^{11 \times 93} \equiv 1^{93} \equiv 1$ ($\bmod 2047)$.

2 (a)

Note that $1729=7 \times 13 \times 19$ and $1728=2^{6} \times 3^{3}$. Consider an a, such that $\operatorname{gcd}(a, 1729)=1$. This implies a is coprime with $7,13,19$ and hence by Fermat's little theorem $a^{6} \equiv 1(\bmod 7), a^{12} \equiv 1(\bmod 13), a^{18} \equiv 1(\bmod 19)$. Since 6,12 and 18 divide 1728 we get that $a^{1728}=a^{6 \times 288} \equiv 1(\bmod 7), a^{1728}=a^{12 \times 144} \equiv 1(\bmod 13), a^{1728}=a^{18 \times 96} \equiv 1(\bmod 19)$. Since 7,13 and 19 are relatively prime, by Chinese remainder theorem we obtain that $a^{1728} \equiv 1(\bmod 1729)$ which implies 1729 is Carmichael.

2(b)

Note that $2821=7 \times 13 \times 31$ and $2820=2^{2} \times 3 \times 5 \times 47$. Consider an a, such that $\operatorname{gcd}(a, 2821)=1$. This implies a is coprime with $7,13,31$ and hence by Fermat's little theorem $a^{6} \equiv 1(\bmod 7), a^{12} \equiv 1(\bmod 13), a^{30} \equiv 1(\bmod 31)$. Since 6,12 and 30 divide 2820 we get that $a^{2820}=a^{6 \times 470} \equiv 1(\bmod 7), a^{2820}=a^{12 \times 235} \equiv 1(\bmod 13), a^{2820}=a^{30 \times 94} \equiv 1(\bmod 31)$. Since 7,13 and 31 are relatively prime, by Chinese remainder theorem we obtain that $a^{2820} \equiv 1$ (mod 2821) which implies 2821 is Carmichael.

2 (c)

Consider an a, such that $\operatorname{gcd}(a, n)=1$. This implies a is coprime with $p_{1}, p_{2}, \ldots, p_{k}$ and hence by Fermat's little theorem $a^{p_{i}-1} \equiv 1\left(\bmod p_{i}\right), 1 \leq i \leq k$. Since $p_{i}-1 \mid n-1$ for $i=1,2, \ldots, k$, we get that $a^{n-1}=a^{\left(p_{i}-1\right) \times(n-1) /\left(p_{i}-1\right)} \equiv 1\left(\bmod p_{i}\right)$. Since $p_{1}, p_{2}, \ldots, p_{k}$ are relatively prime, by Chinese remainder theorem we obtain that $a^{n-1} \equiv 1(\bmod n)$ which implies n is Carmichael.

3(a)

a is a quadratic residue of $11 \mathrm{iff} \exists i, 1 \leq i \leq 10, i^{2} \equiv a(\bmod 11)$. We compute $i^{2} \bmod 11$ for $1 \leq i \leq 10$, and get the multiset $\{1,4,9,5,3,3,5,9,4,1\}$. Thus $\{1,3,4,5,9\}$ are quadratic resideues of 11 .

3(b)

Note that if r is a solution to $x^{2} \equiv a(\bmod p)$ then so is $(p-r)$ since $r^{2} \equiv(p-r)^{2} \bmod p$. Since p is odd, $r \neq p-r$. Let s be a third solution i.e. $s \not \equiv r(\bmod p)$ and $s \not \equiv-r(\bmod p)$. Then $r^{2} \equiv s^{2}(\bmod p)$ and hence $p \mid(r-s)(r+s)$. Since p is prime, either $p \mid(r-s)$ or $p \mid(r+s)$ which implies either $r \equiv s(\bmod p)$ or $s \equiv-r(\bmod p)$. Hence, no third solution is possible and the congruence has either no solution or exactly two incongruent solutions modulo p.

3(c)

Consider the $(p-1) / 2$ pairs $(i, p-i)$ for $1 \leq i \leq(p-1) / 2$. From $3(\mathrm{~b})$ we have seen that, $i^{2} \equiv(p-i)^{2}(\bmod p)=a_{i}(\operatorname{say})$. Further (again from $3(\mathrm{~b})$), if $i \neq j$ then $a_{i} \neq a_{j}$. Hence $a_{1}, a_{2}, \ldots, a_{(p-1) / 2}$ are $(p-1) / 2$ distinct numbers between 1 and $p-1$ that are quadratic residues of p.

4(a)

We need to show that if $a \equiv b(\bmod p)$, then a is a quadratic residue of p iff b is a quadratic residue of p. If a is a quadratic residue than $x^{2} \equiv a(\bmod p)$ has a solution, say r. But then $r^{2} \equiv a \equiv b(\bmod p)$ and so b is also a quadratic residue.

4(b)

If a is a quadratic residue of p then $\exists r, r^{2} \equiv a(\bmod p)$. Since a is not a multiple of p, neither is r. Hence by Fermat's little theorem, $r^{p-1} \equiv a^{(p-1) / 2} \equiv 1(\bmod p)$ and hence $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$.

If a is not a quadratic residue then we consider the set $S=\{1,2,3, \ldots, p-1\}$.

1. The product of the elements of S is $(p-1)$! which by Wilson's theorem is equivalent to $-1(\bmod p)$.
2. Next we pair the elements of S with i, j forming a pair iff $i \cdot j \equiv a(\bmod p)$.
(a) This pairing is well defined since if $i \cdot j \equiv a \equiv i \cdot k(\bmod p)$ then $i^{-1} \cdot i \cdot j \equiv i^{-1} \cdot i \cdot k(\bmod p)$. Hence $j \equiv k($ $\bmod p)$ which, since $1 \leq j, k \leq p-1$, implies $j=k$.
(b) Further if $i \cdot j \equiv a(\bmod m)$ then, since a is not a quadratic residue, we have $i \neq j$.
3. The pairing implies that the product of the elements in S is $a^{(p-1) / 2}(\bmod p)$.

From (1) and (3) we conclude that when a is not a quadratic residue $a^{(p-1) / 2} \equiv-1(\bmod p)$ and hence $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}($ $\bmod p$).

4(c)

Note that modulo p, $\left(\frac{a b}{p}\right)=(a b)^{(p-1) / 2}=a^{(p-1) / 2} b^{(p-1) / 2}=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.

5

In $4(\mathrm{~b})$ we proved that -1 is a quadratic residue of $p \mathrm{iff}(-1)^{(p-1) / 2} \equiv 1(\bmod p)$. When $p=4 k+1$, then $(p-1) / 2=2 k$ and hence $(-1)^{(p-1) / 2}=1$. Similarly -1 is a quadratic non-residue iff $(-1)^{(p-1) / 2} \equiv-1(\bmod p)$. When $p=4 k+3$, then $(p-1) / 2=2 k+1$ and hence $(-1)^{(p-1) / 2}=-1$.

6

We consider the conguences $x^{2} \equiv 29 \equiv 4(\bmod 5)$ and $x^{2} \equiv 29 \equiv 1(\bmod 7)$. By the Chinesese remainder theorem, any solution to this system of congruences also satisfies the original congruence. Solutions to the first congruence satisfy $x \equiv 2$ ($\bmod 5)$ or $x \equiv-2(\bmod 5)$. Similarly, solutions to the second congruence satisfy $x \equiv 1(\bmod 7)$ or $x \equiv-1(\bmod 7)$. This yields 4 different system of congruences:

1. $x \equiv 2(\bmod 5)$ and $x \equiv 1(\bmod 7)$ which has the solution $\mathrm{x}=22$.
2. $x \equiv 2(\bmod 5)$ and $x \equiv-1(\bmod 7)$ which has the solution $\mathrm{x}=27$.
3. $x \equiv-2(\bmod 5)$ and $x \equiv 1(\bmod 7)$ which has the solution $\mathrm{x}=8$.
4. $x \equiv-2(\bmod 5)$ and $x \equiv-1(\bmod 7)$ which has the solution $\mathrm{x}=13$.

Hence the congruence $x^{2} \equiv 29(\bmod 35)$ has solutions $\{8,13,22,27\}$

