Solutions to Sheet 7

1(a)

Let $n-1 = 2^{s_t}$ and consider the quantities $b^{2^{s_t}} \mod n$, $b^{2^{s-1}t} \mod n$, \dots , $b^{2^t} \mod n$, $b^t \mod n$. Since n is prime, by Fermat's little theorem $b^{n-1} \equiv 1 \pmod{n}$. Further since n is prime, $x^2 \equiv 1 \pmod{n}$ implies either $x \equiv 1 \pmod{n}$ or $x \equiv -1 \pmod{n}$. This implies that the quantities considered above are either all 1 or we have a sequence of 1's followed by a -1. In the former case we have $b^t \equiv 1 \pmod{n}$ while in the latter we have a $j, 0 \leq j \leq s-1$, such that $b^{2^{j_t}} \equiv -1 \pmod{n}$. Thus n passes the Miller test.

1(b)

Note that $2047 = 23 \times 89$ and is hence composite. Further $2046 = 2 \times 1023$ and so to show that 2047 pases the miller test it suffices to show that $2^{1023} \equiv 1 \pmod{2047}$. Note that $2^{11} = 2048 \equiv 1 \pmod{2047}$. Hence $2^{1023} = 2^{11 \times 93} \equiv 1^{93} \equiv 1 \pmod{2047}$. Mode 2047).

2(a)

Note that $1729 = 7 \times 13 \times 19$ and $1728 = 2^6 \times 3^3$. Consider an a, such that gcd(a, 1729) = 1. This implies a is coprime with 7, 13, 19 and hence by Fermat's little theorem $a^6 \equiv 1 \pmod{7}, a^{12} \equiv 1 \pmod{13}, a^{18} \equiv 1 \pmod{19}$. Since 6, 12 and 18 divide 1728 we get that $a^{1728} = a^{6 \times 288} \equiv 1 \pmod{7}, a^{1728} = a^{12 \times 144} \equiv 1 \pmod{13}, a^{1728} = a^{18 \times 96} \equiv 1 \pmod{19}$. Since 7, 13 and 19 are relatively prime, by Chinese remainder theorem we obtain that $a^{1728} \equiv 1 \pmod{1729}$ which implies 1729 is Carmichael.

2(b)

Note that $2821 = 7 \times 13 \times 31$ and $2820 = 2^2 \times 3 \times 5 \times 47$. Consider an *a*, such that gcd(a, 2821) = 1. This implies *a* is coprime with 7, 13, 31 and hence by Fermat's little theorem $a^6 \equiv 1 \pmod{7}, a^{12} \equiv 1 \pmod{13}, a^{30} \equiv 1 \pmod{31}$. Since 6, 12 and 30 divide 2820 we get that $a^{2820} = a^{6 \times 470} \equiv 1 \pmod{7}, a^{2820} = a^{12 \times 235} \equiv 1 \pmod{13}, a^{2820} = a^{30 \times 94} \equiv 1 \pmod{31}$. Since 7, 13 and 31 are relatively prime, by Chinese remainder theorem we obtain that $a^{2820} \equiv 1 \pmod{2821}$ which implies 2821 is Carmichael.

2(c)

Consider an a, such that gcd(a, n) = 1. This implies a is coprime with $p_1, p_2, ..., p_k$ and hence by Fermat's little theorem $a^{p_i-1} \equiv 1 \pmod{p_i}, 1 \leq i \leq k$. Since $p_i - 1 | n - 1$ for i = 1, 2, ..., k, we get that $a^{n-1} = a^{(p_i-1)\times(n-1)/(p_i-1)} \equiv 1 \pmod{p_i}$. Since $p_1, p_2, ..., p_k$ are relatively prime, by Chinese remainder theorem we obtain that $a^{n-1} \equiv 1 \pmod{n}$ which implies n is Carmichael.

3(a)

a is a quadratic residue of 11 iff $\exists i, 1 \leq i \leq 10, i^2 \equiv a \pmod{11}$. We compute $i^2 \mod 11$ for $1 \leq i \leq 10$, and get the multiset $\{1, 4, 9, 5, 3, 3, 5, 9, 4, 1\}$. Thus $\{1, 3, 4, 5, 9\}$ are quadratic residues of 11.

3(b)

Note that if r is a solution to $x^2 \equiv a \pmod{p}$ then so is (p-r) since $r^2 \equiv (p-r)^2 \mod p$. Since p is odd, $r \neq p-r$. Let s be a third solution i.e. $s \not\equiv r \pmod{p}$ and $s \not\equiv -r \pmod{p}$. Then $r^2 \equiv s^2 \pmod{p}$ and hence p | (r-s)(r+s). Since p is prime, either p | (r-s) or p | (r+s) which implies either $r \equiv s \pmod{p}$ or $s \equiv -r \pmod{p}$. Hence, no third solution is possible and the congruence has either no solution or exactly two incongruent solutions modulo p.

3(c)

Consider the (p-1)/2 pairs (i, p-i) for $1 \le i \le (p-1)/2$. From 3(b) we have seen that, $i^2 \equiv (p-i)^2 \pmod{p} = a_i(\text{say})$. Further (again from 3(b)), if $i \ne j$ then $a_i \ne a_j$. Hence $a_1, a_2, \ldots, a_{(p-1)/2}$ are (p-1)/2 distinct numbers between 1 and p-1 that are quadratic residues of p.

4(a)

We need to show that if $a \equiv b \pmod{p}$, then a is a quadratic residue of p iff b is a quadratic residue of p. If a is a quadratic residue than $x^2 \equiv a \pmod{p}$ has a solution, say r. But then $r^2 \equiv a \equiv b \pmod{p}$ and so b is also a quadratic residue.

4(b)

If a is a quadratic residue of p then $\exists r, r^2 \equiv a \pmod{p}$. Since a is not a multiple of p, neither is r. Hence by Fermat's little theorem, $r^{p-1} \equiv a^{(p-1)/2} \equiv 1 \pmod{p}$ and hence $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$.

If a is not a quadratic residue then we consider the set $S = \{1, 2, 3, \dots, p-1\}$.

1. The product of the elements of S is (p-1)! which by Wilson's theorem is equivalent to $-1 \pmod{p}$.

- 2. Next we pair the elements of S with i, j forming a pair iff $i \cdot j \equiv a \pmod{p}$.
 - (a) This pairing is well defined since if $i \cdot j \equiv a \equiv i \cdot k \pmod{p}$ then $i^{-1} \cdot i \cdot j \equiv i^{-1} \cdot i \cdot k \pmod{p}$. Hence $j \equiv k \pmod{p}$ which, since $1 \leq j, k \leq p-1$, implies j = k.
 - (b) Further if $i \cdot j \equiv a \pmod{m}$ then, since a is not a quadratic residue, we have $i \neq j$.
- 3. The pairing implies that the product of the elements in S is $a^{(p-1)/2} \pmod{p}$.

From (1) and (3) we conclude that when a is not a quadratic residue $a^{(p-1)/2} \equiv -1 \pmod{p}$ and hence $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$.

4(c)

Note that modulo p, $\left(\frac{ab}{p}\right) = (ab)^{(p-1)/2} = a^{(p-1)/2}b^{(p-1)/2} = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right).$

 $\mathbf{5}$

In 4(b) we proved that -1 is a quadratic residue of p iff $(-1)^{(p-1)/2} \equiv 1 \pmod{p}$. When p = 4k + 1, then (p-1)/2 = 2k and hence $(-1)^{(p-1)/2} = 1$. Similarly -1 is a quadratic non-residue iff $(-1)^{(p-1)/2} \equiv -1 \pmod{p}$. When p = 4k + 3, then (p-1)/2 = 2k + 1 and hence $(-1)^{(p-1)/2} = -1$.

6

We consider the conguences $x^2 \equiv 29 \equiv 4 \pmod{5}$ and $x^2 \equiv 29 \equiv 1 \pmod{7}$. By the Chinesese remainder theorem, any solution to this system of congruences also satisfies the original congruence. Solutions to the first congruence satisfy $x \equiv 2 \pmod{7}$ mod 5) or $x \equiv -2 \pmod{5}$. Similarly, solutions to the second congruence satisfy $x \equiv 1 \pmod{7}$ or $x \equiv -1 \pmod{7}$. This yields 4 different system of congruences:

- 1. $x \equiv 2 \pmod{5}$ and $x \equiv 1 \pmod{7}$ which has the solution x=22.
- 2. $x \equiv 2 \pmod{5}$ and $x \equiv -1 \pmod{7}$ which has the solution x=27.
- 3. $x \equiv -2 \pmod{5}$ and $x \equiv 1 \pmod{7}$ which has the solution x=8.
- 4. $x \equiv -2 \pmod{5}$ and $x \equiv -1 \pmod{7}$ which has the solution x=13.

Hence the congruence $x^2 \equiv 29 \pmod{35}$ has solutions $\{8, 13, 22, 27\}$