Solutions to Sheet 7
1(a)

Let n — 1 = 25t and consider the quantities v2°¢ mod n, b2° ¢ mod n,...,b* mod n, b' mod n. Since n is prime, by
Fermat’s little theorem "~! = 1( mod n). Further since n is prime, 22 = 1( mod n) implies either z = 1( mod n) or
x = —1( mod n). This implies that the qunatiities considered above are either all 1 or we have a sequence of 1’s followed

by a -1. In the former case we have b* = 1( mod n) while in the latter we have a 5,0 < j < s — 1, such that b2t = —1(
mod n). Thus n passes the Miller test.

1(b)

Note that 2047 = 23 x 89 and is hence composite. Further 2046 = 2 x 1023 and so to show that 2047 pases the miller test
it suffices to show that 2!°%% = 1( mod 2047). Note that 2!! = 2048 = 1( mod 2047). Hence 2102 = 211x93 = 193 = 1(
mod 2047).

2(a)

Note that 1729 = 7 x 13 x 19 and 1728 = 2¢ x 33. Consider an a, such that gcd(a, 1729) = 1. This implies a is coprime with
7, 13, 19 and hence by Fermat’s little theorem a® = 1( mod 7),a'? = 1( mod 13),a'® = 1( mod 19). Since 6, 12 and 18
divide 1728 we get that a8 = ¢%288 = 1( mod 7), a!™8 = @'2*'* = 1( mod 13), a8 = a!¥*9% = 1( mod 19). Since
7, 13 and 19 are relatively prime, by Chinese remainder theorem we obtain that a!7*® = 1( mod 1729) which implies 1729
is Carmichael.

2(b)

Note that 2821 = 7 x 13 x 31 and 2820 = 22 x 3 x 5 x 47. Consider an a, such that ged(a, 2821) = 1. This implies a is coprime
with 7, 13, 31 and hence by Fermat’s little theorem a® = 1( mod 7),a'? = 1( mod 13),a3° = 1( mod 31). Since 6, 12 and
30 divide 2820 we get that a?%?° = ¢5%470 = 1( mod 7), a?%?° = ¢!2*235 = 1( mod 13), a®*?° = ¢3°%% = 1( mod 31).
Since 7, 13 and 31 are relatively prime, by Chinese remainder theorem we obtain that a?®?° = 1( mod 2821) which implies
2821 is Carmichael.

2(c)

Consider an a, such that ged(a,n) = 1. This implies a is coprime with pi,pa,...,pr and hence by Fermat’s little theorem
aPi~t = 1( mod p;),1 < i < k. Since p; — 1jn — 1 for i = 1,2, ...k, we get that a"~! = aP:=Vx(=1/®i=1) = 1(" mod p;).
Since p1, pa, ..., pr are relatively prime, by Chinese remainder theorem we obtain that ¢”~! = 1( mod n) which implies n is
Carmichael.

3(a)

a is a quadratic residue of 11 iff 3i, 1 < i < 10, i2 = a( mod 11). We compute i mod 11 for 1 < i < 10, and get the
multiset {1,4,9,5,3,3,5,9,4,1}. Thus {1,3,4,5,9} are quadratic resideues of 11.

3(b)

Note that if r is a solution to 22 = a( mod p) then so is (p — ) since r? = (p — r)? mod p. Since p is odd, r # p — r. Let
s be a third solution i.e. s #Z r( mod p) and s # —r( mod p). Then r? = s?( mod p) and hence p|(r — s)(r + s). Since p
is prime, either p|(r — s) or p|(r + s) which implies either » = s( mod p) or s = —r( mod p). Hence, no third solution is
possible and the congruence has either no solution or exactly two incongruent solutions modulo p.

3(c)

Consider the (p — 1)/2 pairs (i,p — i) for 1 <4 < (p —1)/2. From 3(b) we have seen that, i> = (p —i)?( mod p) = a;(say).
Further (again from 3(b)), if i # j then a; # a;. Hence ay,as,...,a@—1)/2 are (p — 1)/2 distinct numbers between 1 and
p — 1 that are quadratic residues of p.

4(a)

We need to show that if @ = b( mod p), then a is a quadratic residue of p iff b is a quadratic residue of p. If a is a quadratic
residue than 2 = a( mod p) has a solution, say r. But then 7> = a = b( mod p) and so b is also a quadratic residue.
4(b)

If a is a quadratic residue of p then 3r,7% = a( mod p). Since a is not a multiple of p, neither is 7. Hence by Fermat’s little
theorem, 77! = a(P~1/2 = 1( mod p) and hence (%) =a®~Y/2( mod p).

If a is not a quadratic residue then we consider the set S ={1,2,3,...,p —1}.

1. The product of the elements of S is (p — 1)! which by Wilson’s theorem is equivalent to —1( mod p).



2. Next we pair the elements of S with 4, j forming a pair iff 7 - j = a( mod p).

(a) This pairing is well defined since if i - j = a =i - k( mod p) then i~ -4i-j =i71.i-k( mod p). Hence j = k(
mod p) which, since 1 < j,k < p— 1, implies j = k.

(b) Further if i - j = a( mod m) then, since a is not a quadratic residue, we have i # j.
3. The pairing implies that the product of the elements in S is a(p_l)/z( mod p).

From (1) and (3) we conclude that when a is not a quadratic residue a(P~1/2 = —1( mod p) and hence (%) = aP=D/3(
mod p).

4(c)
Note that modulo p, <ab> — (ab)(P—l)/Q — qlP=1)/2p(p—1)/2 _ (%) (g)'

P
5

In 4(b) we proved that -1 is a quadratic residue of p iff (—1)?=1/2 = 1( mod p). When p = 4k + 1, then (p — 1)/2 = 2k
and hence (—1)~1/2 = 1. Similarly -1 is a quadratic non-residue iff (—=1)*=1/2 = —1(' mod p). When p = 4k + 3, then
(p—1)/2 =2k +1 and hence (—1)P~1/2 = 1,

6

We consider the conguences 22 = 29 = 4( mod 5) and 22 = 29 = 1( mod 7). By the Chinesese remainder theorem, any
solution to this system of congruences also satisfies the original congruence. Solutions to the first congruence satisfy x = 2(
mod 5) or z = —2( mod 5). Similarly, solutions to the second congruence satisfy z = 1( mod 7) or = —1( mod 7). This
yields 4 different system of congruences:

1. 2 =2( mod 5) and z = 1( mod 7) which has the solution x=22.

2. =2( mod 5) and x = —1( mod 7) which has the solution x=27.

3. z = —2( mod 5) and x = 1( mod 7) which has the solution x=8.

4. z = —2( mod 5) and x = —1( mod 7) which has the solution x=13.
Hence the congruence z? = 29( mod 35) has solutions {8, 13, 22,27}





