
Solutions to Sheet 7

1(a)

Let n − 1 = 2st and consider the quantities b2
st mod n, b2

s−1t mod n, . . . , b2t mod n, bt mod n. Since n is prime, by
Fermat's little theorem bn−1 ≡ 1( mod n). Further since n is prime, x2 ≡ 1( mod n) implies either x ≡ 1( mod n) or
x ≡ −1( mod n). This implies that the qunatiities considered above are either all 1 or we have a sequence of 1's followed

by a -1. In the former case we have bt ≡ 1( mod n) while in the latter we have a j, 0 ≤ j ≤ s − 1, such that b2
jt ≡ −1(

mod n). Thus n passes the Miller test.

1(b)

Note that 2047 = 23 × 89 and is hence composite. Further 2046 = 2 × 1023 and so to show that 2047 pases the miller test
it su�ces to show that 21023 ≡ 1( mod 2047). Note that 211 = 2048 ≡ 1( mod 2047). Hence 21023 = 211×93 ≡ 193 ≡ 1(
mod 2047).

2(a)

Note that 1729 = 7× 13× 19 and 1728 = 26 × 33. Consider an a, such that gcd(a, 1729) = 1. This implies a is coprime with
7, 13, 19 and hence by Fermat's little theorem a6 ≡ 1( mod 7), a12 ≡ 1( mod 13), a18 ≡ 1( mod 19). Since 6, 12 and 18
divide 1728 we get that a1728 = a6×288 ≡ 1( mod 7), a1728 = a12×144 ≡ 1( mod 13), a1728 = a18×96 ≡ 1( mod 19). Since
7, 13 and 19 are relatively prime, by Chinese remainder theorem we obtain that a1728 ≡ 1( mod 1729) which implies 1729
is Carmichael.

2(b)

Note that 2821 = 7×13×31 and 2820 = 22×3×5×47. Consider an a, such that gcd(a, 2821) = 1. This implies a is coprime
with 7, 13, 31 and hence by Fermat's little theorem a6 ≡ 1( mod 7), a12 ≡ 1( mod 13), a30 ≡ 1( mod 31). Since 6, 12 and
30 divide 2820 we get that a2820 = a6×470 ≡ 1( mod 7), a2820 = a12×235 ≡ 1( mod 13), a2820 = a30×94 ≡ 1( mod 31).
Since 7, 13 and 31 are relatively prime, by Chinese remainder theorem we obtain that a2820 ≡ 1( mod 2821) which implies
2821 is Carmichael.

2(c)

Consider an a, such that gcd(a, n) = 1. This implies a is coprime with p1, p2, ..., pk and hence by Fermat's little theorem
api−1 ≡ 1( mod pi),1 ≤ i ≤ k. Since pi − 1|n − 1 for i = 1, 2, ..., k, we get that an−1 = a(pi−1)×(n−1)/(pi−1) ≡ 1( mod pi).
Since p1, p2, ..., pk are relatively prime, by Chinese remainder theorem we obtain that an−1 ≡ 1( mod n) which implies n is
Carmichael.

3(a)

a is a quadratic residue of 11 i� ∃i, 1 ≤ i ≤ 10, i2 ≡ a( mod 11). We compute i2 mod 11 for 1 ≤ i ≤ 10, and get the
multiset {1, 4, 9, 5, 3, 3, 5, 9, 4, 1}. Thus {1, 3, 4, 5, 9} are quadratic resideues of 11.

3(b)

Note that if r is a solution to x2 ≡ a( mod p) then so is (p − r) since r2 ≡ (p − r)2 mod p. Since p is odd, r 6= p − r. Let
s be a third solution i.e. s 6≡ r( mod p) and s 6≡ −r( mod p). Then r2 ≡ s2( mod p) and hence p|(r − s)(r + s). Since p
is prime, either p|(r − s) or p|(r + s) which implies either r ≡ s( mod p) or s ≡ −r( mod p). Hence, no third solution is
possible and the congruence has either no solution or exactly two incongruent solutions modulo p.

3(c)

Consider the (p− 1)/2 pairs (i, p− i) for 1 ≤ i ≤ (p− 1)/2. From 3(b) we have seen that, i2 ≡ (p− i)2( mod p) = ai(say).
Further (again from 3(b)), if i 6= j then ai 6= aj . Hence a1, a2, . . . , a(p−1)/2 are (p − 1)/2 distinct numbers between 1 and
p− 1 that are quadratic residues of p.

4(a)

We need to show that if a ≡ b( mod p), then a is a quadratic residue of p i� b is a quadratic residue of p. If a is a quadratic
residue than x2 ≡ a( mod p) has a solution, say r. But then r2 ≡ a ≡ b( mod p) and so b is also a quadratic residue.

4(b)

If a is a quadratic residue of p then ∃r, r2 ≡ a( mod p). Since a is not a multiple of p, neither is r. Hence by Fermat's little

theorem, rp−1 ≡ a(p−1)/2 ≡ 1( mod p) and hence
(

a
p

)
≡ a(p−1)/2( mod p).

If a is not a quadratic residue then we consider the set S = {1, 2, 3, . . . , p− 1}.

1. The product of the elements of S is (p− 1)! which by Wilson's theorem is equivalent to −1( mod p).
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2. Next we pair the elements of S with i, j forming a pair i� i · j ≡ a( mod p).

(a) This pairing is well de�ned since if i · j ≡ a ≡ i · k( mod p) then i−1 · i · j ≡ i−1 · i · k( mod p). Hence j ≡ k(
mod p) which, since 1 ≤ j, k ≤ p− 1, implies j = k.

(b) Further if i · j ≡ a( mod m) then, since a is not a quadratic residue, we have i 6= j.

3. The pairing implies that the product of the elements in S is a(p−1)/2( mod p).

From (1) and (3) we conclude that when a is not a quadratic residue a(p−1)/2 ≡ −1( mod p) and hence
(

a
p

)
≡ a(p−1)/2(

mod p).

4(c)

Note that modulo p,
(

ab
p

)
= (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 =

(
a
p

)(
b
p

)
.

5

In 4(b) we proved that -1 is a quadratic residue of p i� (−1)(p−1)/2 ≡ 1( mod p). When p = 4k + 1, then (p − 1)/2 = 2k
and hence (−1)(p−1)/2 = 1. Similarly -1 is a quadratic non-residue i� (−1)(p−1)/2 ≡ −1( mod p). When p = 4k + 3, then
(p− 1)/2 = 2k + 1 and hence (−1)(p−1)/2 = −1.

6

We consider the conguences x2 ≡ 29 ≡ 4( mod 5) and x2 ≡ 29 ≡ 1( mod 7). By the Chinesese remainder theorem, any
solution to this system of congruences also satis�es the original congruence. Solutions to the �rst congruence satisfy x ≡ 2(
mod 5) or x ≡ −2( mod 5). Similarly, solutions to the second congruence satisfy x ≡ 1( mod 7) or x ≡ −1( mod 7). This
yields 4 di�erent system of congruences:

1. x ≡ 2( mod 5) and x ≡ 1( mod 7) which has the solution x=22.

2. x ≡ 2( mod 5) and x ≡ −1( mod 7) which has the solution x=27.

3. x ≡ −2( mod 5) and x ≡ 1( mod 7) which has the solution x=8.

4. x ≡ −2( mod 5) and x ≡ −1( mod 7) which has the solution x=13.

Hence the congruence x2 ≡ 29( mod 35) has solutions {8, 13, 22, 27}
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