Tutorial Sheet 6

Sept 6,8,9

1. Show that if a and b are both positive integers, then $\left(2^{a}-1\right) \bmod \left(2^{b}-1\right)=2^{a \bmod b}-1$.
2. Use the above to show that if a and b are positive integers, then $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=2^{g c d(a, b)}-1$. [Hint: Show that the remainders obtained when the Euclidean algorithm is used to compute $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)$ are of the form $2^{r}-1$, where r is a remainder arising when the Euclidean algorithm is used to find $\operatorname{gcd}(a, b)$.]
3. Prove or disprove that $p_{1} p_{2} \cdots p_{n}+1$ is prime for every positive integer n, where $p_{1}, p_{2}, \ldots, p_{n}$ are the n smallest prime numbers.
4. Use the Chinese remainder theorem to show that an integer a, with $0 \leq a<m=m_{1} m_{2} \cdots m_{n}$, where the positive integers $m_{1}, m_{2}, \ldots, m_{n}$ are pairwise relatively prime, can be represented uniquely by the n-tuple ($a \bmod m_{1}, a$ $\bmod m_{2}, \ldots, a \bmod m_{n}$).
5. Show with the help of Fermat's little theorem that if n is a positive integer, then 42 divides $n^{7}-n$.
6. Show that the system of congruences $x \equiv a_{1}\left(\bmod m_{1}\right)$ and $x \equiv a_{2}\left(\bmod m_{2}\right)$, where a_{1}, a_{2}, m_{1} and m_{2} are integers with $m_{1}>0$ and $m_{2}>0$, has a solution if and only if $\operatorname{gcd}\left(m_{1}, m_{2}\right) \mid\left(a_{1}-a_{2}\right)$.
7. Show that if the system in the above question has a solution, then it is unique modulo $\operatorname{lcm}\left(m_{1}, m_{2}\right)$.
8. Prove the correctness of the following rule to check if a number, N, is divsible by 7 : Partition N into 3 digit numbers from the right $\left(d_{3} d_{2} d_{1}, d_{6} d_{5} d_{4}, \ldots\right)$. The alternating sum $\left(d_{3} d_{2} d_{1}-d_{6} d_{5} d_{4}+d_{9} d_{8} d_{7}-\ldots\right)$ is divisible by 7 if and only if N is divisible by 7 .
9. Show that if $a c \equiv b c(\bmod m)$ then $a \equiv b(\bmod (m / d))$ where $d=g c d(c, m)$.
10. How many zeroes are at the end of the binary expansion of 100_{10} !?

Solutions to Sheet 6

1. Let $a=b q+r, r=a \bmod b$. Note $x^{k}-1=(x-1)\left(x^{k-1}+x^{k-2}+\cdots+1\right)$ and hence for all integer $k \geq 1,(x-1) \mid\left(x^{k}-1\right)$. Choosing $x=2^{b}$ we get $\left(2^{b}-1\right) \mid\left(2^{b q}-1\right)$ and hence $\left(2^{a}-1\right) \bmod \left(2^{b}-1\right)=2^{r}-1=2^{a \bmod b}-1$.

2

We will prove this by induction. Let $P(a)$ be the stmt: $\forall 0 \leq b<a, \operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=2^{\operatorname{gcd}(a, b)}-1$. $\mathrm{P}(1)$ is true since for $\mathrm{a}=1, \mathrm{~b}=0$, we get $\operatorname{gcd}(1,0)=2^{\operatorname{gcd}(1,0)}-1=1$. We assume $P(i)$ is true, $1 \leq i \leq a$, and show that this implies $P(a+1)$. Now

$$
\begin{aligned}
\operatorname{gcd}\left(2^{a+1}-1,2^{b}-1\right) & \left.=\operatorname{gcd}\left(2^{b}-1,\left(2^{a+1}-1\right) \bmod \left(2^{b}-1\right)\right)\right) \\
& =\operatorname{gcd}\left(2^{b}-1,2^{(a+1)} \bmod b-1\right) \\
& =2^{\operatorname{gcd}(b,(a+1) \bmod b)}-1 \\
& =2^{\operatorname{gcd}(a+1, b)}-1
\end{aligned}
$$

where the second equality follows from Q1, the third equality from $P(b)$ since $b \leq a$, and the first and fourth equalities from the fact that $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, x \bmod y)$.

3

Th eproduct of the first 6 prime numbers is $2.3 .5 .7 .11 .13=30030$. The number $30031=59 \times 509$ and is composite thereby disproving the statement.

4

Suppose there exists distinct integers $a, b, 0 \leq a, b<m$, and the n-tuples corresponding to these integers are identical i.e $\forall i, 1 \leq i \leq n, a \equiv b\left(\bmod m_{i}\right)$. Since the m_{i} are relatively prime, by Chinese remainder we get that $a \equiv b(\bmod m)$ which implies that $m \mid(a-b)$. Since $0 \leq a, b<m$, we get $-m<(a-b)<m$. Hence $(a-b)$ is divisible by m iff $(a-b)=0$ which is a contradiction since a and b are distinct.

5

By Fermat's little theorem, $7 \mid\left(n^{7}-n\right)$ and $3 \mid\left(n^{3}-n\right)$. From solution 1 it follows that $\left(n^{2}-1\right) \mid\left(n^{6}-1\right)$ and hence $\left(n^{3}-n\right) \mid\left(n^{7}-n\right)$. So $3 \mid\left(n^{7}-n\right)$. If n is odd then n^{7} is odd and so $\left(n^{7}-n\right)$ is even. If n is even then again $\left(n^{7}-n\right)$ is even. Hence $2 \mid\left(n^{7}-n\right)$. Since $2,3,7$ are co-prime we can apply Chinese remainder to conclude that $n^{7} \equiv n(\bmod 42)$.

6

The system of congruences has a solution iff $\exists k_{1}, k_{2} \in \mathbb{Z}, k_{1} m_{1}+a_{1}=k_{2} m_{2}+a_{2}$. Rearranging we get, $k_{1} m_{1}-k_{2} m_{2}=a_{2}-a_{1}$. Note that $k_{1} m_{1}-k_{2} m_{2}$ is an integer linear combination of m_{1}, m_{2}. Any integer linear combination of m_{1}, m_{2} will be a multiple of $\operatorname{gcd}\left(m_{1}, m_{2}\right)$ and hencegcd $\left(m_{1}, m_{2}\right)$ must divide $\left(a_{2}-a_{1}\right)$.

Let $d=\left(a_{2}-a_{1}\right) / \operatorname{gcd}\left(m_{1}, m_{2}\right)$. By the Extended Euclid's Algorithm we know that there exist s, t such thatsm $+t m_{2}=$ $\operatorname{gcd}\left(m_{1}, m_{2}\right)$. Hence, $k_{1}=s \cdot d$ and $k_{2}=-t \cdot d$ is a solution to $k_{1} m_{1}-k_{2} m_{2}=a_{2}-a_{1}$ and so $x=k_{1} m_{1}+a_{1}=s d m_{1}+a_{1}$ is the solution to the system.

7

Suppose x, y are two solutions to the system of congruences. Then $x \equiv a_{1}\left(\bmod m_{1}\right)$ and $y \equiv a_{1}\left(\bmod m_{1}\right)$. Hence $x \equiv y($ $\left.\bmod m_{1}\right)$ and so $m_{1} \mid(x-y)$. Similarly $x \equiv y\left(\bmod m_{2}\right)$ and so $m_{2} \mid(x-y)$. Thus $l c m\left(m_{1}, m_{2}\right) \mid(x-y)$ and hence $x \equiv y($ $\left.\bmod \operatorname{lcm}\left(m_{1}, m_{2}\right)\right)$.

8

Note that $1000 \equiv-1(\bmod 7)$. By padding with zeros we can assume that n has 3 k digits. and let n be $d_{3 k} d_{3 k-1} \ldots d_{2} d_{1}$. Then $n=\sum_{i=1}^{k} d_{3 i} d_{3 i-1} d_{3 i-2} 10^{3(i-1)}$ and so $n \equiv \sum_{i=1}^{k}(-1)^{i-1} d_{3 i} d_{3 i-1} d_{3 i-2}(\bmod 7)$. Thus n is divisible by 7 iff $\left(d_{3} d_{2} d_{1}-d_{6} d_{5} d_{4}+\right.$ $\left.\cdots+(-1)^{k-1} d_{3 k} d_{3 k-1} d_{3 k-2}\right)$ is divisble by 7 .

9

If $a c \equiv b c(\bmod m)$ then $m \mid c(a-b)$ and so $(m / d) \mid(c / d)(a-b)$. Since $\operatorname{gcd}(m / d, c / d)=1$, it should be the case that $(m / d) \mid(a-b)$. Hence $a \equiv b(\bmod (m / d))$.

The number of zeroes in the binary expansion of a number n is the largest k such that 2^{k} divides n. Note that $\left\lfloor 100 / 2^{i}\right\rfloor$ numbers between 1 and 100 are divisible by 2^{i}. Hence 100 ! is divisible by 2^{k} where $k=\lfloor 100 / 2\rfloor+\lfloor 100 / 4\rfloor+\lfloor 100 / 8\rfloor+\lfloor 100 / 16\rfloor+$ $\lfloor 100 / 32\rfloor+\lfloor 100 / 64\rfloor=50+25+12+6+3+1=97$.

