Tutorial Sheet 6

Sept 6,8,9

- 1. Show that if a and b are both positive integers, then $(2^a 1) \mod (2^b 1) = 2^a \mod b 1$.
- 2. Use the above to show that if a and b are positive integers, then $gcd(2^a 1, 2^b 1) = 2^{gcd(a,b)} 1$. [Hint: Show that the remainders obtained when the Euclidean algorithm is used to compute $gcd(2^a 1, 2^b 1)$ are of the form $2^r 1$, where r is a remainder arising when the Euclidean algorithm is used to find gcd(a,b).]
- 3. Prove or disprove that $p_1p_2\cdots p_n+1$ is prime for every positive integer n, where $p_1, p_2, ..., p_n$ are the n smallest prime numbers.
- 4. Use the Chinese remainder theorem to show that an integer a, with $0 \le a < m = m_1 m_2 \cdots m_n$, where the positive integers m_1, m_2, \ldots, m_n are pairwise relatively prime, can be represented uniquely by the *n*-tuple ($a \mod m_1, a \mod m_2, \ldots, a \mod m_n$).
- 5. Show with the help of Fermat's little theorem that if n is a positive integer, then 42 divides $n^7 n$.
- 6. Show that the system of congruences $x \equiv a_1 \pmod{m_1}$ and $x \equiv a_2 \pmod{m_2}$, where a_1, a_2, m_1 and m_2 are integers with $m_1 > 0$ and $m_2 > 0$, has a solution if and only if $gcd(m_1, m_2)|(a_1 a_2)$.
- 7. Show that if the system in the above question has a solution, then it is unique modulo $lcm(m_1, m_2)$.
- 8. Prove the correctness of the following rule to check if a number, N, is divisible by 7: Partition N into 3 digit numbers from the right $(d_3d_2d_1, d_6d_5d_4, \ldots)$. The alternating sum $(d_3d_2d_1 d_6d_5d_4 + d_9d_8d_7 \ldots)$ is divisible by 7 if and only if N is divisible by 7.
- 9. Show that if $ac \equiv bc \pmod{m}$ then $a \equiv b \pmod{m/d}$ where d = gcd(c, m).
- 10. How many zeroes are at the end of the binary expansion of 100_{10} ?

Solutions to Sheet 6

1. Let $a = bq + r, r = a \mod b$. Note $x^k - 1 = (x - 1)(x^{k-1} + x^{k-2} + \dots + 1)$ and hence for all integer $k \ge 1, (x - 1)|(x^k - 1)$. Choosing $x = 2^b$ we get $(2^b - 1)|(2^{bq} - 1)$ and hence $(2^a - 1) \mod (2^b - 1) = 2^r - 1 = 2^a \mod b - 1$.

$\mathbf{2}$

We will prove this by induction. Let P(a) be the stmt: $\forall 0 \leq b < a, \gcd(2^a - 1, 2^b - 1) = 2^{\gcd(a,b)} - 1$. P(1) is true since for a=1, b=0, we get $\gcd(1,0) = 2^{\gcd(1,0)} - 1 = 1$. We assume P(i) is true, $1 \leq i \leq a$, and show that this implies P(a+1). Now

$$gcd(2^{a+1} - 1, 2^{b} - 1) = gcd(2^{b} - 1, (2^{a+1} - 1) \mod (2^{b} - 1)))$$

= $gcd(2^{b} - 1, 2^{(a+1)} \mod (b) - 1)$
= $2^{gcd(b,(a+1) \mod b)} - 1$
= $2^{gcd(a+1,b)} - 1$

where the second equality follows from Q1, the third equality from P(b) since $b \le a$, and the first and fourth equalities from the fact that $gcd(x, y) = gcd(y, x \mod y)$.

3

Th eproduct of the first 6 prime numbers is 2.3.5.7.11.13 = 30030. The number $30031 = 59 \times 509$ and is composite thereby disproving the statement.

4

Suppose there exists distinct integers $a, b, 0 \le a, b < m$, and the n-tuples corresponding to these integers are identical i.e $\forall i, 1 \le i \le n, a \equiv b \pmod{m_i}$. Since the m_i are relatively prime, by Chinese remainder we get that $a \equiv b \pmod{m}$ which implies that m | (a - b). Since $0 \le a, b < m$, we get -m < (a - b) < m. Hence (a - b) is divisible by m iff (a - b) = 0 which is a contradiction since a and b are distinct.

$\mathbf{5}$

By Fermat's little theorem, $7|(n^7-n)$ and $3|(n^3-n)$. From solution 1 it follows that $(n^2-1)|(n^6-1)$ and hence $(n^3-n)|(n^7-n)$. So $3|(n^7-n)$. If n is odd then n^7 is odd and so (n^7-n) is even. If n is even then again (n^7-n) is even. Hence $2|(n^7-n)$. Since 2,3,7 are co-prime we can apply Chinese remainder to conclude that $n^7 \equiv n \pmod{42}$.

6

The system of congruences has a solution iff $\exists k_1, k_2 \in \mathbb{Z}$, $k_1m_1 + a_1 = k_2m_2 + a_2$. Rearranging we get, $k_1m_1 - k_2m_2 = a_2 - a_1$. Note that $k_1m_1 - k_2m_2$ is an integer linear combination of m_1, m_2 . Any integer linear combination of m_1, m_2 will be a multiple of $gcd(m_1, m_2)$ and hencegcd (m_1, m_2) must divide $(a_2 - a_1)$.

Let $d = (a_2 - a_1)/\operatorname{gcd}(m_1, m_2)$. By the Extended Euclid's Algorithm we know that there exist s, t such that $sm_1 + tm_2 = \operatorname{gcd}(m_1, m_2)$. Hence, $k_1 = s \cdot d$ and $k_2 = -t \cdot d$ is a solution to $k_1m_1 - k_2m_2 = a_2 - a_1$ and so $x = k_1m_1 + a_1 = sdm_1 + a_1$ is the solution to the system.

$\mathbf{7}$

Suppose x, y are two solutions to the system of congruences. Then $x \equiv a_1 \pmod{m_1}$ and $y \equiv a_1 \pmod{m_1}$. Hence $x \equiv y \pmod{m_1}$ and so $m_1|(x-y)$. Similarly $x \equiv y \pmod{m_2}$ and so $m_2|(x-y)$. Thus $lcm(m_1, m_2)|(x-y)$ and hence $x \equiv y \pmod{m_1}$ mod $lcm(m_1, m_2)$.

8

Note that $1000 \equiv -1 \pmod{7}$. By padding with zeros we can assume that n has 3k digits. and let n be $d_{3k}d_{3k-1} \dots d_2d_1$. Then $n = \sum_{i=1}^k d_{3i}d_{3i-1}d_{3i-2}10^{3(i-1)}$ and so $n \equiv \sum_{i=1}^k (-1)^{i-1}d_{3i}d_{3i-1}d_{3i-2} \pmod{7}$. Thus n is divisible by 7 iff $(d_3d_2d_1 - d_6d_5d_4 + \dots + (-1)^{k-1}d_{3k}d_{3k-1}d_{3k-2})$ is divisible by 7.

9

If $ac \equiv bc \pmod{m}$ then m|c(a-b) and so (m/d)|(c/d)(a-b). Since gcd(m/d, c/d) = 1, it should be the case that (m/d)|(a-b). Hence $a \equiv b \pmod{m/d}$.

$\mathbf{10}$

The number of zeroes in the binary expansion of a number n is the largest k such that 2^k divides n. Note that $\lfloor 100/2^i \rfloor$ numbers between 1 and 100 are divisible by 2^i . Hence 100! is divisible by 2^k where $k = \lfloor 100/2 \rfloor + \lfloor 100/4 \rfloor + \lfloor 100/8 \rfloor + \lfloor 100/16 \rfloor + \lfloor 100/32 \rfloor + \lfloor 100/64 \rfloor = 50 + 25 + 12 + 6 + 3 + 1 = 97$.