Tutorial Sheet 4

Aug 17, 19, 20

- 1. Determine whether each of these sets is countable or uncountable. For those that are countable, exhibit a one-to-one mapping from the set to the set of positive integers.
 - (a) all positive rational numbers that cannot be written with denominators less than 4
 - (b) the real numbers not containing 0 in their decimal representation
 - (c) the real numbers containing only a finite number of 1s in their decimal representation
 - (d) integers divisible by 5 but not by 7
 - (e) the real numbers with decimal representations consisting of all 1s
 - (f) the real numbers with decimal representations of all 1s or 9s.
- 2. Show that if A is an infinite set, then it contains a countably infinite subset.
- 3. Show that there is no infinite set A such that $|A| < |Z^+| = \aleph_0$.
- 4. Show that the union of a countable number of countable sets is countable.
- 5. The Schroeder-Bernstein theorem states that if there is an injective mapping from A to B and an injective mapping from B to A then there exists a bijective mapping from A to B. Use this to argue that
 - (a) (0,1) and [0,1] have the same cardinality
 - (b) (0,1) and \Re have the same cardinality
- 6. Show that there is no one-to-one correspondence from the set of positive integers to the power set of the set of positive integers. [Hint: Assume that there is such a one-to- one correspondence. Represent a subset of the set of positive integers as an infinite bit string with i^{th} bit 1 if i belongs to the subset and 0 otherwise. Suppose that you can list these infinite strings in a sequence indexed by the positive integers. Construct a new bit string with its i^{th} bit equal to the complement of the i^{th} bit of the i^{th} string in the list. Show that this new bit string cannot appear in the list.]
- 7. Show that there is a one-to-one correspondence from the set of subsets of the positive integers to the set of real numbers between 0 and 1. Use this to conclude that $\aleph_0 < |P(Z^+)| = |\Re|$.
- 8. Show that if S is a set, then there does not exist an onto function f from S to P(S), the power set of S. Conclude that |S| < |P(S)|. This result is known as Cantor's theorem. [Hint: Suppose such a function f existed. Let $T = s \in S | s \notin f(s)$ and show that no element s can exist for which f(s) = T.]

Solutions to Tutorial Sheet 4

Solution 1

If A is countable then there exists an injective mapping $f:A\to Z^+$ which, for any $S\subseteq A$ gives an injective mapping $g:S\to Z^+$ thereby establishing that S is countable. The contrapositive of this is: if a set is not countable then any superset is not countable.

- (a) The rational numbers are countable (done in class) and this is a subset of the rationals. Hence this set is also countable.
- (b) this set is not countable. For contradiction suppose the elements of this set in (0,1) are enumerable. As in the diagonalization argument done in class we construct a number, r, in (0,1) whose decimal representation has as its i^{th} digit (after the decimal) a digit different from the i^{th} digit (after the decimal) of the i^{th} number in the enumeration. Note that r can be constructed so that it does not have a 0 in its representation. Further, by construction r is different from all the other numbers in the enumeration thus yielding a contradiction.

Solution 2

In class we defined an infinite set as a set that is not finite. Let $S = \{a_1, a_2, \dots, a_i, \dots\}$ be a set where $a_i \in A \setminus \{a_1, a_2, \dots, a_{i-1}\}$.

subset Every element of S is an element of A and hence $S \subseteq A$.

infinite For contradiction assume that S is finite and $S = \{a_1, a_2, \dots, a_k\}$. Since we could not find an element in $A \setminus \{a_1, a_2, \dots, a_k\}$ this implies that A is finite which is false.

countable The mapping $f: S \to Z^+$ defined by $f(a_i) = i$, is injective and establishes that S is a countable set. f is also an onto mapping from S to Z^+ since for any positive integer i, there exists $a_i \in S$ such that $f(a_i) = i$. Hence f is a bijection.

Solution 3

Since A is an infinite set, from Q2 it follows that there exists $S \subseteq A$ and a bijection from S to Z^+ . Hence $|A| \ge |S| = |Z^+|$.

Solution 4

Let U be a universe and $\mathcal{C} \subseteq 2^U$ the set of all countable subsets of U. Let $\mathcal{A} \subseteq \mathcal{C}$ be a countable subset of \mathcal{C} and $g: \mathcal{A} \to Z^+$ be an injective mapping. Let $A_i \in \mathcal{A}$ be such that $g(A_i) = i$. Since A_i is countable there exists an injective mapping $h_i: A_i \to Z^+$.

Let $X \subseteq U$ be the union of the sets in A. To show X is countable we will show an injective mapping $r: X \to Z^+ \times Z^+$. Since in class we have seen an injective mapping from $Z^+ \times Z^+$ to Z^+ the composition of these two mappings gives us an injective mapping from X to Z^+ .

Consider $x \in X$ and amongst all sets in A containing x, let A_i be the one with smallest index (this set exists by the well-ordering principle). Let $h_i(x) = j$. Then we define r(x) = (i, j). To show this is injective suppose, for contradiction, that r(x) = r(y) = (i, j). Then $x, y \in A_i$ and $h_i(x) = h_i(y) = j$. This contradicts the fact that h_i is injective.

Solution 5(a)

The identity mapping (h(x) = x) is an injective mapping from (0,1) to [0,1]. The mapping h(x) = (2x + 1)/4 is a bijection from [0,1] to [1/4, 3/4] and hence an injection from [0,1] to (0,1).

Solution 5(b)

Consider the mapping defined as follows:

$$h(x) = \begin{cases} \frac{1}{4x} + \frac{3}{4}, & x > 1\\ \frac{x}{4} + \frac{1}{2}, & -1 \le x \le 1\\ \frac{1}{4x} + \frac{1}{4}, & x < -1 \end{cases}$$

h is an injective mapping from \Re to (0,1). The identity mapping is an injective mapping from (0,1) to \Re .

Solution 6

Assume that $f: Z^+ \to 2^{Z^+}$ is a bijection. Let $T \subseteq Z^+$ be defined as: $i \in T$ iff $i \notin f(i)$. Since f is a bijection, f^{-1} exists and let $f^{-1}(T) = j$. Does $j \in T$? By definition of T, $j \in T$ iff $j \notin f(j) = T$. Thus we arrive at a contradiction and hence f does not exist.

Solution 7

A subset of the set of positive integers can be thought of as an infinite bit string with the i^{th} bit 1 if i belongs to the subset and 0 otherwise. With any such bit string we can associate $r \in (0,1)$ by attaching a decimal point at the beginning of the string and viewing it as the binary expansion of r. Conversely, given a $r \in (0,1)$ we write the binary expansion of r and make it an infinite bit string by removing the decimal point and appending an infinite sequence of 0's. This infinite bit sring corresponds to a set of positive integers. This gives a bijection between the set (0,1) and $P(Z^+)$. In question 6 we argued that $|P(Z^+)| > |Z^+|$ and in question 5(b) we showed that there is a bijection between (0,1) and \Re . Hence $\Re_0 = |Z^+| < |P(Z^+)| = |\Re|$.

Solution 8

Note that in Question 6 we proved this for the case when S is Z^+ . The same proof works with S replacing Z^+ .